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Abstract

Title of Dissertation: AEROELASTIC RESPONSE AND

STABILITY OF TILTROTORS WITH

ELASTICALLY-COUPLED COMPOSITE

ROTOR BLADES

Mark W. Nixon, Doctor of Philosophy, 1993

Dissertation directed by: Dr. Inderjit Chopra, Professor

Department of Aerospace Engineering

There is a potential for improving the performance and aeroelastic stability

of tiltrotors through the use of elastically-coupled composite rotor blades. To

study the characteristics of tiltrotors with these types of rotor blades it is nec-

essary to formulate a new analysis which has the capabilities of modeling both a

tiltrotor configuration and an anisotropic rotor blade. Background for these formu-

lations is established in two preliminary investigations. In the first, the influence

of several system design parameters on tiltrotor aeroelastic stability is examined

for the high-speed axial flight mode using a newly-developed rigid-blade analysis

with an elastic wing finite element model. The second preliminary investigation

addresses the accuracy of using a one-dimensional beam analysis to predict fre-

quencies of elastically-coupled highly-twisted rotor blades. Important aspects of

the new aeroelastic formulations are the inclusion of a large steady pylon angle

which controls tilt of the rotor system with respect to the airflow, the inclusion of



elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-

related degrees of freedom which enable modeling of a gimballed rotor system and

engine drive-train dynamics, and additional elastic coupling terms which enable

modeling of the anisotropic features for both the rotor blades and the tiltrotor

wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of

the results produced for a baseline case with analytical and experimental results

reported in the open literature. Two investigations of elastically tailored blades

on a baseline tiltrotor are then conducted. One investigation shows that elastic

bending-twist coupling of the rotor blade is a very effective means for increasing

the flutter velocity of a tiltrotor, and the magnitude of coupling required does not

have an adverse effect on performance or blade loads. The second investigation

shows that passive blade twist control via elastic extension-twist coupling of the

rotor blade has the capability of significantly improving tiltrotor aerodynamic per-

formance. This concept, however, is shown to have, in general, a negative impact

on stability characteristics.
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Chapter 1

Introduction

1.1 Problem Statement

The tiltrotor aircraft has been a subject of considerable interest because of its

ability to combine vertical take-off and landing capability with efficient long-range

and high-speed cruise flight capability. This aircraft is similar to a conventional

fixed-wing aircraft, but has a large-diameter rotor system mounted to a pylon at

each wing tip. The pylons are rotated to change between airplane and helicopter

flight modes.

In high-speed axial flight (airplane mode), the tiltrotor is subject to an insta-

bility known as proprotor whirl flutter. In this configuration, high inflow through

the rotor results in large inplane motion-dependent rotor forces. The inplane forces

for a tiltrotor are much larger than those typically associated with conventional

propeller-driven aircraft because of the flexible blades undergoing flap and lag

motions. The motion-dependent rotor forces act to reduce damping in the wing,

resulting in greater wing motion and therefore greater pylon and hub motion. The

rotor forces and wing/pylon motion augment each other with increasing airspeed

to the point where the rotor forces may become destabilizing, ultimately driving

the rotor/pylon/wing system unstable.



In helicopterflight, the tiltrotor is subject to the sameharsh dynamic environ-

ment asa conventionalhelicopter. There is the possibility of aeroelasticinstabilities

associatedwith flutter, divergence,and air resonance.However,blade flexibility is

an important characteristicfor the aeroelasticinteractions,and generallythe more

flexible the bladebecomes,the morelikely that an instability may occur. Because

tiltrotor bladestend to be shorterand stiffer than helicopterblades,the likelihood

of an instability is lessenedfor a tiltrotor in the helicopter flight mode compared

to its conventionalcounterpart.

The operational changebetweenairplane and helicopter flight modesleads to

a compromisein tiltrotor designfor aerodynamicperformance.The conventional

rotor blade planform and twist distribution cannot be optimized for both high-

inflow airplane flight and low-inflow helicopter flight simultaneously. As such,

the hover performanceof tiltrotors is generally sacrificed in favor of axial flight

performancewhich is the flight regimewherethis vehicleholds a large advantage

overhelicopters.

The discussionto this point hasfocusedon problems which are inherent to the

tiltrotor configuration. In summary, the tiltrotor has performance losses associated

with compromise in design between two extreme flight regimes, and is subject to

whirl flutter in high speed flights because the rotor system is mounted on an elastic

wing. There is a potential for improving the performance and aeroelastic stability,

as well as the vibration characteristics, of tiltrotors through the use of elastically-

coupled composite rotor blades. The aerodynamic performance may be improved

if the blade can be tailored to deform such that the geometry becomes optimum in

each flight regime. The system aeroelastic stability may be improved if blade modes

are elastically-coupled so that high damping in one mode may be transferred into

a lower damped mode. The investigation of potential uses for elastically-coupled

composite rotor blades on tiltrotor aircraft requires sophisticated, comprehensive



analytical capabilitieswhich do not currently exist. While adequateanalysesexist

for modeling tiltrotor aeroelasticbehavior, they do not provide a capability for

modeling elastically-coupledrotor blades.

The focusof this dissertation is on the developmentof an aeroelastictiltrotor

analysis which has anisotropic composite rotor blade modeling capability. The

theory required to model anisotropic rotor blades is developed,as is the theory

required to aeroelasticallymodel a tiltrotor configuration in all its flight modes.

The basis of the tiltrotor theory development is the current aeroelastic theory

usedfor helicopter modeling in the University of Maryland AdvancedRotor Code

(UMARC). Followingthe analytical development,an investigation is carriedout to

examinethe useof elastically-coupledcompositerotors bladesfor the simultaneous

improvementof the performanceand aeroelasticstability characteristicsof tiltrotor

aircraft.

1.2 Background and Motivation

This dissertation addresses two research topics which have not previously been con-

sidered together: stability aspects of tiltrotor configurations and elastically-coupled

composite rotor blades. Each topic has itself a full history involving separate mo-

tivations and analytical developments. This section first addresses the reasons

why the tiltrotor configuration has become a viable concept. It then discusses

some important aspects of tiltrotor design, followed by a review of the history of

tiltrotor experimental and analytical development. State-of-the-art developments

in anisotropic composite rotor blade modeling is also presented. Lastly, the po-

tential uses for elastically tailored composite blades are discussed, including an

application for the tiltrotor.



1.2.1 Advantages of the Tiltrotor Configuration

The reasons for considering a tiltrotor configuration lie in the desire to merge high-

speed airplane flight with vertical takeoff and low-speed helicopter flight capability.

A conventional helicopter with its large-diameter, slow-turning rotor is the most

efficient vehicle for vertical flight, but it is limited in range and forward flight ve-

locity. High-speed flight, say over 250 knots, requires some variation to the basic

helicopter design concept. There are several configurations which have been con-

sidered for this purpose. These include the tiltrotor, the tilt-wing, the compound

helicopter, stopped-rotor configurations, fan-in-wing configurations, and vectored-

thrust jets. The configuration of choice depends on the mission, but if efficient

hover and vertical flight is truly an important part of a high-speed mission, then

the tiltrotor is perhaps the best choice.

The tiltrotor is an efficient hovering configuration because of its low disc load-

ing. The plot of Figure 1.1 shows the hover efficiency versus the disc loading for

several V/STOL configurations. The advantages associated with hovering at a

low disc loading are many: low downwash velocity allow these vehicles to operate

from unprepared field areas, low tip-speed and low downwash produce favorable

noise levels, and low power requirements lead to low fuel consumption and greatly

increased range.

Some aspects of the tilt-wing configuration have advantages over the tiltrotor.

First, the wing chord remains in line with the rotor flow field, which reduces the

wing interference effect experienced by a tiltrotor in hover. Second, on liftoff, the

wing has its chord, the stronger of the wing directions, oriented in the direction

of lift so that less overall wing structure is required to support the fuselage. This

leads to thinner and more efficient wings for high-speed flight. Further, the tilt-

wing does not have the control mechanisms of a tiltrotor. There is no need for the

complexity and weight of conventional helicopter-type cyclic controls on a tilt-wing
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because with its high disc loading it cannot hover for a long period of time, and it

cannot fly efficiently at low speed in a helicopter mode because of the high wing

drag. Because of these characteristics, the tilt-wing has a very narrow conversion

corridor (speed and altitude at which the wing can be tilted into or back from

airplane mode) which makes it more difficult to operate than a tiltrotor.

Stopped-rotor configurations and compound helicopters have never been able

to achieve efficiency in both hover and forward flight as successfully as has the

tiltrotor. The stop-rotor type configurations, such as X-wing, suffer from the

requirements of 1) the additional weight and complexity of a circulation control

system and/or 2) the loss of efficiency in hover associated with thick, high-chord,

stiff rotor blades of elliptical cross section. Similarly, compound helicopters carry

a rather large weight penalty in an auxiliary propulsion device, and tend to have

stub-wing designs which degrade hover efficiency. The combination of these two

penalties has proved too much to overcome in compound helicopter designs to date.

The last two V/STOL configurations mentioned, the fan-in-wing and the vec-

tored-thrust jets do not compete for the same missions with a tiltrotor. These

aircraft can have supersonic capabilities for forward flight, but are extremely inef-

ficient in hover and vertical flight. The main goal of these designs is simply to have

the ability to take-off vertically and get to forward flight as quickly as possible.

In military missions these configurations are fighters and attack aircraft, while a

tiltrotor is a troop transport, scout, and search and rescue aircraft.

The tiltrotor has great potential for both military and civil missions. For the

military missions, the high-speed aspect gives the tiltrotor quicker response times

in comparison to conventional helicopters. The tiltrotor also has a greater range

with capabilities to penetrate and rescue over 400 miles into enemy territory. This

capability would greatly increase U.S. military strength in the types of air wars it

has been involved in over the last few decades. In rescue operations, the vertical



flight capability is extremely important. The tiltrotor has the additional benefit of

reaching rescue sites two to three times faster than present rescue aircraft in use.

On the commercial side, tiltrotor aircraft may enhance short-haul operations of

less than 800 miles. Passengers will benefit from increased accessibility to heliports

which can be located around and inside metropolitan areas, decreasing time and

expense of travel to and away from current congested airports. Remote locations

currently serviced by helicopters, such as off-shore oil rigs, could be reached in

about half the time it currently takes.

1.2.2 Important Considerations in Tiltrotor Design

The tiltrotor is a unique aircraft which requires some special design considerations

beyond those of conventional helicopters and fixed-wing propeller airplanes. This

section discusses some important considerations for tiltrotors related to aerody-

namics, wing download, control loads, noise, gust response, and vibratory loads.

Aeroelastic stability is also an important consideration, but, as it is the focus of the

present research, this subject is discussed in greater detail in a separate section.

First, it is advantageous to understand the important aerodynamic design con-

siderations which have been identified in the development of the XV-15 Advanced

Technology Blades (ATB) and V-22 (formerly JVX) rotor blades [1,2]. Many of

the difficulties experienced in the aerodynamic design of these blades stem from

the differences in rotor inflow and thrust requirements between helicopter hover

mode and high-speed airplane flight. In hover, the inflow is comparatively small,

and the blade loading is high since the rotor system is supporting the entire weight

of the aircraft and its payload. The hover thrust must also overcome the download

produced by the rotor wake impinging on the wing below. The wing download can

itself be as large as 10-15 percent of the total rotor thrust [3]. The thrust available

in hover must be able to overcome the maximum allowable gross weight and the



wing download, and still have an adequate margin to provide roll control without

stalling the rotor. In high-speed airplane flight, the inflow is high, and the blade

loading is comparatively low since the thrust only has to overcome the aircraft

drag. Because the rotor thrust efficiency generally increases with disc loading, the

blade aerodynamic design in the airplane flight regime is strongly dependent on

the blade twist and planform selections.

Several parameters have been considered in the aerodynamic design of tiltrotor

blades. Aerodynamic design of the V-22 blades considered diameter, number of

blades, tip speed, airfoils, twist, chord, and taper ratio [2]. For this design, the

diameter was set at 38 feet because of storage clearance considerations (requirement

for shipboard operations), and the number of blades was set at 3 because of the

level of experience in dealing with the rotor dynamics of this system and because

of the storage clearance considerations. Thus, no trade-off studies were conducted

for these two important parameters. The rotor tip speed was selected based mainly

on maximizing thrust for a given power level. In the hover mode, the variation of

thrust with tip speed near the maximum thrust is fairly flat so a non-optimum tip-

speed may be selected for auxiliary benefits. An important concern for tiltrotors

is noise during landing and take-off, so it is possible to select a tip speed slightly

lower than that associated with the theoretical optimum to improve the acoustic

characteristics without a noticeable loss in hover efficiency. In high-speed airplane

flight, the rotor tip speed must be reduced because of compressibility effects at

the blade tips. For this flight regime the tip speed may be selected based on

maximum airspeed, service ceiling, maximum range, maximum range airspeed, or

a combination of these parameters. As an example, the airplane mode tip speed

is lower than the hover tip speed by about 16 percent for the V-22 and by about

20-percent for the XV-15. Tiltrotor airfoils are selected depending on their radial

location. The inboard blade sections require a thick airfoil to accommodate root



structure build-up, the middle sectionsareselectedfor maximum lift to drag ratio

(generally12 to 15percentthick), and the outboard sectionsrequirea thin airfoil

(about 9percentthick) becausetheseareemcientovera largerangeof attack angles

and have low drag divergenceMach numbers. The airfoil sectionsare selected

subject to a constraint on pitching moment coefficientswhich must be low for

acceptablecontrol systemloadsand vibration characteristics,just asfor helicopter

blades.The bladetwist and chorddistributions areselectedbasedona compromise

betweenfigure of merit in hover mode and propeller efficiency in airplane mode

at the designforward flight velocity. The aerodynamicdesignprocessbeginsby

approximating a chord and twist through parametric study. Once approximate

planform and twist is defined, which will hopefully meet both hover and cruise

flight requirements, the final distribution can be defined with consideration to

which flight modeis more important for the design. The compromiserequired for

a typical tiltrotor twist design is illustrated in Figure 1.2. The chord selection

is subject to requirementsfor low-speedmaneuvercapability which is assessed

by maximum load factor at a given velocity and altitude in helicopter mode. A

chord taper ratio may also be included in the design to improve hoverefficiency.

However,taper tends to reducepropeller efficiency.If the final chord distribution

is significantly different from initial assumptions,the designprocessmay needto

be restarted with the new chord values.

As mentionedabove,noiseis an important considerationfor tiltrotors. The key

issuesassociatedwith tiltrotor noiseare discussedin a recent study by Huston,

Golub, and Yu [4]. These issuesseriously impact the viability of a civil tiltro-

tor where interior noiseaffectspassengercomfort and exterior noiseaffectspublic

acceptanceof vertiports. The noiseassociatedwith tiltrotor airplane mode oper-

ations is similar to that of a conventionalturboprop aircraft, which is a favorable

characterizationfor this flight mode. This noise is lessthan that associatedwith
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helicopters in forward flight. Tiltrotors in hover also tend to produce lessnoise

than helicopters (mainly becauseof the absenceof a tail rotor on the tiltrotor),

but tiltrotors in transition from helicopter to airplane modecan producesubstan-

tially more noise than a helicopter [5]. The high transition noise is created by

blade-vortex interaction resulting from high pylon anglesat high airspeeds. The

transition noisemay alsolead to unsuccessfulmarketing of a civil tiltrotor. Some

of the conceptswhich havebeenconsideredfor reducingthe tiltrotor noisesigna-

ture are: reducing the individual blade loads by increasingthe number of blades

and reducing the sonic cylinder at the blade tip by using chord taper and thin

airfoils.

Gust responseof the tiltrotor is another important consideration which can

impact the rotor system design and the marketability of a civil transport. In high-

speed airplane flight, vertical gusts result in design-limit blade bending loads and

anti-symmetric gusts result in design-limit drive train loads [6]. The marketability

aspect is defined by the cabin accelerations resulting from the gusts. Cabin re-

sponse to vertical gusts are about the same as for conventional turboprop aircraft,

but response to lateral and longitudinal gusts are higher than that associated with

conventional turboprop aircraft [7]. Research efforts devoted to alleviating this

problem have generally focused on use of active controls [8].

Reduction of vibratory loads is another important aspect of the tiltrotor which

can create problems for the pylon and wing. In helicopter mode, the tiltrotor has

some distinct advantages over conventional rotorcraft regarding vibratory loads.

The wing dynamics provide vibration absorption and the rotors can be tilted to

minimize the wake-induced vibration at low speeds [9]. In airplane mode, large

2/rev pylon loads have been experienced in flight tests of the XV-15 Tilt Rotor Re-

search Aircraft (3 blades) [10]. Here, the source of excitation was the second cyclic

rotor mode loads acting at 1/rev and 3/rev through the gimbal. This excitation
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was reducedby optimizing the cyclic controls to maintain zero flapping at high

speeds. The wing aerodynamic interferencein airplane mode can produce large

n/rev shearforcesat the rotor hub, wheren is the number of blades. Large 3/rev

pylon accelerationswereexperiencedin testing of the Bell Model 266 (3 blades)

which wereshownto increasewith forward flight velocity [6]. The cabin response

to theseaccelerations,however,tends to be low becauseof the inherent damping

of the wing.

1.2.3 History of Tiltrotor Development

The first successful demonstrations of the tiltrotor concept occurred in the early

1950's with aircraft developed by the Transcendental Aircraft Corporation and

Bell Helicopter. These early demonstration aircraft were then referred to as tilt-

proprotors or convertiplanes. The Transcendental Model l-G, a 3-bladed 17-foot

diameter fully-articulated convertiplane, made its first free flight at Bellanca Field,

New Castle, Delaware, on July 6, 1954. The rotors were successfully tilted forward

for airplane flight in December, 1954, and the Model 1-G completed 23 hours of air

time in over 100 flights before suffering major airframe damage in an accident on

July 20, 1955. Although the Model 1-G was designed and built without government

support, the United States Air Force awarded a contract to Transcendental in

June, 1952, for the purpose of obtaining data on blade, rotor shaft and control

stresses, and on blade motions under various conditions of ground operation. Tests

conducted under this contract indicated that mechanical instability would be an

important consideration during conversion mode. The Transcendental Model 2 was

built under phase one of an Air Force contract in 1956, and was of the same basic

design of the Model l-G, but with more powerful engines. The final phase of this

contract was a flight test program in which the stability and control characteristics

of the Model 2 were to be determined in all flight regimes, but this phase was never
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initiated due to a termination of funding.

While a concern of mechanical instability developed during testing of the Tran-

scendental Model l-G, it was flight testing of the Bell XV-3 which lead to the

discovery of the whirl flutter instability on tiltrotors. The first XV-3, with a three-

bladed fully-articulated rotor system, was built under an Air Force/Army contract

awarded in 1951, but this aircraft was badly damaged in a 1956 accident related

to a blade oscillation problem. A second XV-3 was designed with a two-bladed

semi-rigid (teetering) rotor system which successfully eliminated the blade oscilla-

tion problem of the first design. This aircraft established its first full conversion in

December 1958, but subsequent testing identified problem areas associated with

high-speed airplane mode of flight. The transient blade flapping during maneuvers

and low levels of longitudinal stability near the dive speed were unacceptable [11].

The low stability margins were found to be related to the inplane forces generated

by the combination of blade flapping and aircraft pitching motions. As a result

of these observations, full-scale wind-tunnel tests were conducted in 1962 in the

NASA Ames 40 x 80-foot wind tunnel. It was during these tests that whirl flutter

instability was first experienced on a tiltrotor system.

Around this same time frame, knowledge of the devastation associated with

whirl flutter on fixed-wing aircraft became well known. On the night of September

29, 1959, a Lockheed Electra turboprop aircraft, belonging to Braniff International

Airways, disintegrated in the air near Buffalo, Texas. A second Electra, belonging

to Northwest Airlines, lost a wing and crashed near Tell City, Indiana, on March

17, 1960. The cause of these two fatal accidents remained unknown until it was es-

tablished in 1963, from NASA Langley wind-tunnel investigations [12], that whirl

flutter could occur in an Electra if the engine nacelle stiffness was greatly reduced,

as by structural failure . While not conclusive, this explanation is generally ac-

cepted as the best explanation of the Electra crashes. Because of the experiences
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with the Lockheed Electra and Bell XV-3, whirl flutter became an important de-

sign consideration and a research topic of great interest in the 1960's and early

1970's.

The U. S. Army began the Composite Aircraft program in 1965 with the objec-

tive of developing a rotary-wing research vehicle which could combine the hovering

capabilities of a helicopter with the high-speed cruise capabilities of a fixed-wing

aircraft. While the program was terminated after a brief two-year period, one of

Bell's contributions to this program, an aeroelastic model of the Model 266, was

given to NASA Langley. Subsequently, a joint NASA/Bell study of tiltrotor stabil-

ity, dynamics, and loads was pursued and tests of the model were conducted in the

Langley Transonic Dynamics Tunnel [6]. These tests helped foster an expertise in

tiltrotor design which lead to improved stability and loads characteristics in later

model aircraft.

In 1968, Bell began development of a 25-foot diameter, 3-bladed gimbaled hub

tiltrotor designated as the Model 300. Dynamic rotor/pylon stability investiga-

tions, both model and full-scale, showed the Model 300 rotor was stable with

margins well beyond the aircraft dive speed. In April 1973, NASA and the Army

selected Bell to design and manufacture two tiltrotor research aircraft which were

originally designated the Model 301, and later became known as the XV-15. These

aircraft were intended to demonstrate the feasibility of a generic tiltrotor configu-

ration [13]. The XV-15 employs slightly forward swept wings to provide adequate

clearance for blade flapping. Stability margins were maximized by use of a stiff

wing, use of a stiff pylon-to-wing attachment, and minimization of the rotor hub

to wing distance. Airplane flight mode stability was maintained to 370 knots with

a 20-percent reduction in wing and pylon stiffness.

A great deal of aeroelastic knowledge was gained from the XV-15 wind tunnel

and flight tests which were conducted by NASA and Bell Helicopter since 1978.
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The capability of CAMRAD to predict the XV-15 performance, loads, and stability

was assessed by Johnson [14]. Good agreement was achieved between analytical

predictions and experimental results of frequency and damping of the wing modes

for the XV-15 rotor mounted on a cantilevered wing and tested in a wind tunnel.

CAMRAD also produced reasonable predictions of wing mode frequencies and

damping of the XV-15 flight tests. Predictions were greatly improved with use

of post-test values for the frequencies and structural damping over those obtained

using NASTRAN frequencies and a uniform one-percent structural damping. The

flight test stability results also indicated a general trend of lower damping for all

the symmetric wing modes in comparison to the cantilevered wing stability results.

Some problems associated with the XV-15 data were also discussed by Johnson [14].

Most notably, the data obtained showed significant scatter in most cases, and were

not acquired at consistent operating conditions (flight altitude and speed varied).

Stability measurements were obtained far away from the stability boundaries which

created difficulties in the assessment of analytical predictive capabilities.

The first production tiltrotor will be the V-22 Osprey being developed for use

by the United States Military. The V-22 development program (formerly a Joint

Services program and designated the JVX) was started in April 1983. Six of these

aircraft have been developed as part of a 1985 full-scale development program con-

tracted to Bell Helicopter Textron Inc. and Boeing Helicopter Company. Tests of

a 1/5-scale semi-span aeroelastic model of the V-22 were conducted in the NASA-

Langley Transonic Dynamics Tunnel (TDT) during 1984 [15]. The purpose of these

tests was to obtain data to aid full-scale development and establish a data base for

analytical validation. The influence of many important design parameters, such

as compressibility, wing stiffness, rotor control stiffness, pitch-flap coupling, and

coning on the system stability were experimentally determined. Analytical com-

parisons of CAMRAD and DYN4 (Bell Helicopter's proprotor aeroelastic analysis
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which is similar to PASTA [16]) were made with the experimental data [15]. The

correlation efforts for these codes were extensive and lead to improvements in each

code. General agreement of the CAMRAD and DYN4 codes with the test data was

poor, but specific areas of improvement were identified: for DYN4 the modeling

of pitch-flap coupling and control system stiffness require improvement while for

CAMRAD compressibility effects at high Mach numbers and coning hinge mod-

eling required further investigation. PASTA was in good agreement with all data

obtained in the TDT tests.

The first production tilt-wing aircraft is currently under development by Ishida

Aerospace Research, Inc. This civil aircraft is designated the TW-68, and is a 14-

passenger high-speed V/STOL tilt-wing with two propeller-nacelle systems and

four turbo-prop engines. Little information on development of this aircraft, which

has been conducted completely in-house, is currently available.

1.2.4 Elastic Tailoring of Composite Rotor Blades

Since the 1960's, there has been a slow changeover from the use of metal to the use

of composite blades for both manufacturing and structural performance reasons.

This section will discuss some of the advantages associated with composite rotor

blades, including some recent advanced concepts for elastic tailoring.

The manufacturability of rotor blades has been greatly improved with the ad-

vent of composites. Construction techniques used for metal blades, for cost rea-

sons, limit the complexity of the blade geometry. Metal rotor blades are generally

designed with a thin-wall spar wrapped in a semi-monocoque skin. Thin-wall con-

struction is obviously required for weight and structural efficiency, but this type of

construction is costly for metal parts which must be stamped or rolled into the de-

sired shape. If the blade geometry varies along the span, then the machine tooling

becomes more elaborate and more expensive. It is common for metal rotor blades
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to be almost uniform along the span. Linear rotor blade twist is often introduced

by mechanically deforming the clamped blade after construction is completed.

Composite construction techniques are fundamentally different from those as-

sociated with metal blades. Composite blades are built up from layers of material

laid down or filament wound onto a solid mandrel. In some instances, laminates

are laid up on fiat surfaces and then formed against female clam-shell tooling dur-

ing cure. In either case, the cost of manufacturing a geometrically complex and

precise component is negligibly different from the cost of manufacturing a simple

one. The manufacturing cost of a composite rotor blade set is competitive with

metal blades, and considering that more complex rotor blade geometries can be

designed within budgetary constraints using composites, the majority of new blade

designs have shifted to composite construction.

With the increased flexibility in planform design associated with composite

rotor blades, researchers and designers have pursued new aerodynamic performance

benefits. The spanwise distribution of airfoil sections are now routinely altered to

optimize performance. This capability is important for rotor blades because of the

significant changes in local velocity which occur along the span. Generally, thick

airfoil sections with large chord are desired inboard to increase lift where velocity is

low, and thin airfoils with small chord are desired outboard to reduce Mach effects

where velocity is high. Detrimental effects associated with blade stall can also

be improved through variation of the planform, and induced drag can be reduced

with nonlinear twist distributions. These aerodynamic performance improvements,

made economically feasible by using composite materials, have expanded the flight

envelope of the helicopter.

In the structural performance area, the advantages of composite blades include

stiffness, strength, fatigue life, damage tolerance, corrosion tolerance, and elastic

tailorability. Composite materials generally have much higher strength-to-weight
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and stiffness-to-weight ratios than metals. These properties allow blades to be

designed for minimum weight within autorotational inertia constraints. However,

minimum weight designs have not yet been considered for production rotors be-

cause of limited experience with composite blades and susceptibility to low-impact

damage. With limited experience, blades must be designed very conservatively, far

away from design limits. Low-impact damage is a problem which undermines some

of the structural advantages composites have over metals. This type of damage

is characterized by microscopic cracking or delamination which propagates during

cyclic loading. The initial damage is undetectable by visual inspection and has no

immediate impact on strength or stiffness, but can have a large impact on both in

a relatively short period of time. Metals are generally not susceptible to damage

which cannot be revealed by visual inspection, so lower factors of safety are re-

quired for metal blades. For these reasons, composite blades have generally been

over-designed with respect to strength and stiffness requirements.

The fatigue life of rotor blades has increased dramatically with the shift to

composite construction. Composite materials are inherently resistant to fatigue

damage because they are essentially multiple-load-path systems at the microscopic

level (many overlapping fibers). If there is damage due to cyclic loading, the

load shifts into undamaged (stiffer) areas which slows propagation of the damage

and increases fatigue life. An adverse characteristic of composite blades is the

possibility of delamination between ply layers. After delamination is initiated,

damage generally spreads quickly and can lead to catastrophic failure. Fatigue in

rotor blades eventually leads to delamination, but it is very difficult to predict this

behavior because of its dependence on both geometry and loading. While fatigue

lives of composite rotor blades have been increased to the point where blades can

outlast the airframe, it is still difficult to predict the actual lives of these blades.

Damage tolerance and corrosion resistance of rotor blades have also improved
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with use of composite materials. Composites retain a greater percentage of their

original strength after damage than do metals. This attribute is related to the

multiple load path system and the high strength to weight ratio inherent in com-

posites. Composites can also be tailored to absorb large amounts of energy through

crushing, as demonstrated in crashworthiness-designed components. Corrosion of

metal blades has been shown to reduce strength and fatigue life. Composite rotor

blades are much less susceptible to corrosion and so do not require the corrosion-

protectant coatings that metal blades do.

Many of the advantages of composite materials have been exploited in rotor

blade designs as discussed in the above paragraphs. More advanced structural

design concepts are now being considered which take advantage of composite ma-

terial anisotropy to tailor rotor blade stiffness properties (broadly referred to as

elastic tailoring). Elastic tailoring becomes an attractive when stiffness properties

must be simultaneously controlled in multiple modes or directions, so as to achieve

both a desired chord and flapwise bending stiffness, for example. This is where

composites have a great advantage over metals in rotor design.

Composite materials are composed of fibers, typically graphite, Kevlar, or fiber-

glass, embedded in a matrix, generally some type of epoxy resin. Unidirectional

laminates have fibers running in only one direction which is much stiffer than

the cross direction which is dominated by the matrix properties. Thus, composite

materials have a directional nature which can be used to build laminates, substruc-

tures, and rotor blades with desired directional properties as well. The anisotropy

of composites may also be used to create elastic couplings in structures, such as

extension-twist, bending-twist, or bending-shear. Composite materials, thus, may

be used to tailor structures for a particular environment with relative ease and

cost-efficiency as compared to metals.

A practical example of elastic tailoring in rotor blades is the introduction
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of the composite flexbeam in hingeless and bearingless helicopter rotor systems.

Flexbeams are designed to provide appropriate stiffnesses in the bending directions,

and for bearingless systems must additionally maintain low torsional stiffness for

pitch control. These designs eliminate expensive and fatigue-prone hinges and

bearings used in articulated rotor systems. The advantages of the hingeless and

bearingless designs are decreased production costs, improved aerodynamic per-

formance (reduced parasite drag), and increased maneuverability (higher flap/lag

stiffness quickens control response). With the increased bending stiffnesses as-

sociated with these designs, however, come larger blade loads. With composite

materials, flexbeams can be tailored to achieve the desired stiffnesses while achiev-

ing acceptable strength margins with the blade loads involved.

A more demanding form of elastic tailoring is the introduction of elastic cou-

plings. For rotor blades, anisotropic layups may be used to couple elastic modes

such as bending to twist, extension to twist, or bending in one plane to shear

in the other. There are several reasons why such coupling is desirable in a rotor

blade. Elastic couplings can be used in the same manner, and generally with less

complexity, as kinematic couplings. An example of the use of kinematic couplings

is found in tiltrotors where pitch-flap coupling is used to reduce blade flapping

response. Elastic and kinematic couplings have also been considered to improve

stability characteristics of helicopters. One study has shown that negative pitch-

lag coupling has a stabilizing influence on air resonance [17]. Elastomeric dampers,

generally used to avoid ground and air resonance instabilities in bearingless rotor

designs, may be eliminated if appropriate pitch-lag elastic coupling is designed into

the rotor system.

The use of anisotropic composite rotor blades to reduce vibration and im-

prove aeroelastic and aeromechanical stability characteristics of hingeless rotor

helicopters was recently addressed by Smith [18]. For this study, a finite element
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with sheardegreesof freedom was formulated and implemented into UMARC. The

analysis produced good correlation of frequencies with experimental results for sev-

eral elastically-coupled box-beam specimens. The aeroelastic results showed that,

for the elastic couplings considered, the steady flap and lag responses and the cor-

responding root bending moments and shears were not significantly altered by the

elastic couplings. This is because the rotational stiffness contribution is large and

is unaltered by the elastic couplings. However, the shaft-fixed aeroelastic stability

was significantly altered by the elastic couplings. Use of negative pitch-lag coupling

resulted in a 300% increase in lag mode damping compared to the baseline system.

Elastic couplings were also shown to have a significant influence on ground and

air resonance. The blade design with negative pitch-lag elastic coupling increased

the regressive lag mode damping in air resonance conditions, but greatly decreased

damping for ground resonance stability. Other types of coupling were also found

to destabilize the system in the ground resonance condition.

There have also been studies which show that elastic tailoring may be used to

improve tiltrotor performance [19]. In these studies, the deformation of the rotor

blade is passively controlled to obtain an optimum twist in both the helicopter and

airplane flight modes. The rotor blades of this study are extension-twist coupled

where elastic twist deformation results from changes in centrifugal forces associated

with two rotor speed settings. The design has one rotor speed and associated twist

distribution which are ideal for hover, and a second rotor speed and associated

twist distribution which are ideal for cruise flight. These studies have shown that

significant performance improvements can be gained with realistic extension-twist-

coupled blade designs based on structural strength constraints. The dynamic and

stability aspects of these designs have not been investigated.
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1.3 Survey of Tiltrotor Aeroelastic Research

Much of the history of tiltrotor development has concentrated on predicting and

avoiding whirl flutter instability. Whirl flutter is a self-excited instability result-

ing from precession-generated aerodynamic loads in high-speed flight. This phe-

nomenon has occurred in both conventional fixed-wing propeller aircraft and tiltro-

tots, but the tiltrotor is more susceptible to this instability because of higher levels

of rotor blade flapping, bending, and control system flexibility. The possibility that

whirl flutter could occur on aircraft with propeller systems was first mentioned by

Taylor and Brown in 1938 [20]. The phenomenon was only accorded academic

interest because of high margins of safety in the aircraft of the time. Little atten-

tion was given to the subject until it became a topic of renewed research interest

around 1960.

Several early investigations of the aeroelastic behavior of tiltrotor aircraft hav-

ing straight wings were performed using pylon-pivot models. These models ap-

proximate the wing as a system of springs and masses located at the effective

pylon pivot point. The earliest work with application to tiltrotors was directed

at hinged or flexible propeller systems [21, 22]. The analysis developed through

this research effort, as well as other analyses of the time, had difficulty predicting

forward whirl flutter in several instances in which it was obtained experimentally

with small models. These problems were highlighted in the review made by Reed

[23]. A study by Young and Lytwyn [24] showed that the fundamental (in-vacuum)

blade flapping frequency could be tuned to maximize stability of a tiltrotor sys-

tem. The optimum tuning was approximately 1.1 to 1.2 per-rev, which implies

a requirement for an increase in flapping restraint for an articulated or gimbaled

rotor system. Because an increase in flapping restraint increases blade loads, the

applicability of blade tuning is limited [25]. The results of an experimental and

analytical investigation conducted on a scaled model of the XV-3 tiltrotor were
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reported by Edenborough [26]. His analysis used a math model which included a

wing beamwise translation degree of freedom in addition to the conventional pylon

pitch and yaw freedoms. The effects of several major parameters on stability were

identified: an increase in pylon pitch and yaw stiffnesses is stabilizing, use of blade

pitch-flap coupling (33) is destabilizing, and increased flapping restraint is stabiliz-

ing. These trends were substantiated analytically by DeLarm [27] using a similar

mathematical model. A study of the effects of steady-state coning angle and hinge

damping by Kaza [28] showed that these parameters can also have a significant

influence on stability. The results of extensive parametric studies were reported

by Kvaternik [16, 29, 30]. The axial flight math model used in these latter studies

included all six degrees of freedom at the pylon pivot point, but generally only the

pylon pitch, yaw, and beam (vertical translation) degrees of freedom were used.

These studies verified trends discussed previously and reported some important

new trends: wing aerodynamic forces are stabilizing, unsteady aerodynamic forces

are stabilizing, windmilling configuration is conservative (power-on case is more

stable), high precone is destabilizing, both positive and negative _3 are destabi-

lizing, and blade lag dynamics can have an important influence on stability. The

analytical model of these studies was later extended to include additional degrees

of freedom and a modal representation of the airframe structure, and was then

formalized into a code called PASTA (Proprotor Aeroelastic STability Analysis).

A more comprehensive math model which included a modal representation for

the wing was developed by Johnson [31]. This model was applicable only to axial

flight and included nine degrees of freedom: six for the three-bladed rotor system

(including gimbal capability) and three for the three fundamental wing modes.

Analytical results obtained with this model correlated well with the results of full-

scale proprotor tests. Johnson later extended this math model to include elastic

blade characteristics and helicopter and conversion modes of operation [32,33].
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These models formed the basic theory for the tiltrotor model in CAMRAD [34],

which is one of the few comprehensive rotorcraft codes to allow treatment of a

tiltrotor aircraft.

In 1985, Johnson assessed some of the recent developments in tiltrotor dy-

namics [9]. In this review, Johnson expressed concern in the ability of tiltrotor

analyses to model some of the new rotor configurations being considered, such as

bearingless designs. Concern over the treatment of high-speed aerodynamics was

also expressed. Rotor loads are still an important aspect of tiltrotor design be-

cause these loads can restrict the conversion corridor. Experience with tiltrotor

fuselage vibration showed that wing dynamics provide some vibration absorption,

and the ability of the rotors to tilt forward can be used to minimize the wake-

induced vibration at low speeds. Thus, fuselage vibration does not seem to be as

great a concern for tiltrotors as for helicopters. Johnson consistently emphasizes

the influence of pitch-lag and pitch-flap coupling on tiltrotor stability, pointing out

that pitch-lag coupling is a problem because of large precone. Precone is chosen

to improve blade loads in tiltrotor hover mode, but a large precone at low thrust

in airplane mode produces a negative, destabilizing pitch-lag coupling. Johnson

also mentions that with a soft-inplane rotor, air resonance is possible at low-flight

speeds where aerodynamic damping is low. More details of this phenomenon are

discussed in reference [9].

The dynamics associated with the rotor rotational speed degree of freedom

(collective lag mode) have been shown to have a large influence on whirl flutter

stability [9, 31, 35]. If the rotor speed is assumed to be constant, then the wing roll

motion is transmitted to the rotor, which increases the wing beam bending mode

damping. This, however, is not an accurate model of the tiltrotor physics. If a rotor

is windmilling, the rotor speed is independent of the wing motion, and the wing

beam mode damping is reduced. In the powered case, it has been shown that the
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engine and rotor-speed governor add little resistance so that the windmilling model

is a good representation of the powered case [35]. This is true for a cantilevered

wing model and the symmetric modes of a free-flight tiltrotor. This is not true

for the antisymmetric modes of a free-flight tiltrotor (one wing bending up while

the other is bending down) because stiffness is added to the drive system from the

interconnect shaft. The interconnect shaft is a safety device which connects the

two rotors so that both may be run off of the power of a single engine. In symmetric

modes the shaft creates perturbation of rotor speed in the same direction for both

rotors and thus has no stiffness effect. In antisymmetric modes the shaft creates

perturbation of rotor speed in opposite directions, adding a stiffness to the rotor

speed perturbation modes. The resulting drive system dynamics have a frequency

of the same order as the fundamental wing modes, and can thus have an influence

on the system stability.

Johnson also discusses the predictive capability of rigid-blade linear analyses

for tiltrotor stability [9]. Successful predictions may be made with these analyses

even for hingeless and bearingless rotor designs as long as the effective pitch-lag,

pitch-flap, and flap-lag couplings are included properly. These types of analyses

are effective for a tiltrotor in high-speed airplane flight because of the high-inflow

aerodynamics. With high inflow, both the flap and lag bending motions produce a

first-order change in the blade angle of attack, and the blade lift has large compo-

nents both in and out of the rotation plane. As a result, the lift-curve-slope terms

dominate the aerodynamic contributions to the system matrices (even in the lag

terms), and the aerodynamic loading associated with the deflected trim position

has only a small influence on the system stability. Conversely, for a helicopter

the inflow is much smaller and the blade lift is mainly in the out-of-plane direc-

tion. Thus, the inplane forces are much smaller, and the inplane motion is highly

influenced by the blade loads associated with the deflected trim position.
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The ability of rigid-blade linear analyseswith kinematic couplingsto accurately

predict whirl flutter stability may be reducedfor moreadvancedbladedesignsbe-

causethe elastic couplingcan involvesignificantnonlinear deformations. Another

disadvantageof rigid-blade analyseswould be their inability to accurately predict

rotor dynamics in helicopter or conversionmode where the trim deflection has a

moresignificant influenceon the system.

The most accurate and generalanalysesfor aeroelasticstability are basedon

elastic flap,lag, and torsion blademodels. The earliest known elastic-bladeaeroe-

lastic analysiswhich includeda tiltrotor configurationcapability wasdevelopedby

Johnson [33]and later becamepart of CAMRAD [34]. CAMRAD is capableof an-

alyzingconventionalhelicopterconfigurationswith articulated, hingeless,gimbaled

and teetering rotors. The gimbal rotor systemis, of course,most useful for the

tiltrotor configuration which, as mentionedabove,is also included in CAMRAD.

Bearinglessrotor systems,however,cannot be accurately modeledin CAMRAD

becausethey involvemultiple loadpaths (torque tube andflexbeam),and in CAM-

RAD the bladesareessentiallyformulated for a singleload path. For bearingless

rotors, it is better to usea finite-element-basedblade analysis. The elastic blade

model of CAMRAD is reducedto severalflap-lag-coupledand uncoupled-torsion

modes,and the kinematic couplingsmaybe input directly or calculatedinternally

basedon the control systemgeometry.Becausethe analysisis basedon a flap-lag

rotor model, the flap-lagelasticcouplingsassociatedwith geometry(suchastwist)

are included as part of the modal solution. CAMRAD cannot, however,model a

general coupled anisotropic rotor blade built up from compositematerials. Fur-

ther, modifications to include this capability would bea difficult task becausethe

CAMRAD blade model is not finite elementbased,torsion modesare uncoupled,

and the blade model doesnot include an axial degreeof freedom which may be

elastically coupledwith the flap, lag, or torsion modesfor compositeblades.
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The CAMRAD rotor aerodynamicsformulation is basedon two-dimensional

tabular data, and includescorrectionsfor Machnumber, three-dimensionaleffects,

unsteadyflow, and dynamic stall. Prescribedand free-wakemodelsarealso avail-

able. The CAMRAD airframe consistsof six rigid-body degreesof freedom, ten

elastic modes,and a drive systemwith interconnectshaft option and a rotor speed

perturbation option. The airframe aerodynamicsarebasedon fuselage/wing/tail

steady incidenceanglesand angle rates. Rotor-body and body-tail interference

effects may be included in thesecalculations. Both free-flight and wind-tunnel

modeling options areavailable.

The predictive capabilitiesof CAMRAD have been discussed in several studies,

and correlations with experimental data have generally been favorable [14,15,36,

37]. The study by Popelka, Sheflter, and Bilger [15] was based on tests of a

1/5-scale semi-span aeroelastic model of the V-22 which were conducted in the

NASA-Langley's Transonic Dynamics Tunnel. The influence of many important

design parameters, such as compressibility, wing stiffness, rotor control stiffness,

pitch-flap coupling, and coning, on the system stability were experimentally deter-

mined. Analytical comparisons of CAMRAD and DYN4 (Bell's Proprotor Aeroe-

lastic Analysis which is similar to PASTA) were made with the experimental data.

The correlation of calculated results based on pretest data were generally poor

for the CAMRAD and DYN4 analyses. Coding errors in the DYN4 analysis were

found and corrected, and the analysis was modified to include pitch-lag coupling

terms. The CAMRAD model of the coning hinge hub was modified, and the blade

airfoil data tables were updated based on the wind tunnel test results. These

post-test modifications lead to improved whirl flutter stability predictions for the

CAMRAD and DYN4 codes. Compressibility effects were investigated by testing

the V-22 model in both air and Freon. An investigation of the variation of the

stability boundary with rotor speed showed that while both DYN4 and CAMRAD

25



could predict the flutter boundaries in air accurately, the CAMRAD error was

higher in Freonat high rotor speeds.This error wasbelievedto be related to a

local Mach problem in the CAMRAD airfoil tables. CAMRAD and DYN4 were

shownto predict the damping of the wing beam mode at and near the point of

instability very well (with post-test modifications). The effect of pitch-flap cou-

pling was tested over a rangeof valuesfrom -15 to -10 degrees.The correlation

efforts of the remaining parametric studiesassociatedwith the V-22 wind tunnel

test showedgood agreementfor both analyses. Thesestudies included variation

of wing and control system stiffnesses,and useof a coned hub. An important

aspectof the Popelka,Sheffler,and Bilger study was that it demonstratedcom-

parable predictive capabilitiesof whirl flutter for the rigid-rotor-based DYN4 and

the elastic:rotor-basedCAMRAD.

Comparisonsof aeroelastic analyses with XV-15 flight tests were made by Acree

and Tischler [38]. In these flight tests, modal frequencies and damping were de-

termined using curve fits to frequency response data obtained for an XV-15 with

metal blades. The frequency and damping determined from the flight data were

compared to predictions from two analyses, CAMRAD and ASAP (a new pro-

prietary analysis developed by Bell, replacing DYN4, but still similar to PASTA).

ASAP and CAMRAD produced similar predictions, but generally agreed with each

other better than the flight test data. Both the frequency and damping predictions

of the analyses were in general significantly different from the flight test results.

The analytical models used wing natural frequencies, mode shapes, and general-

ized masses as developed by NASTRAN models, with structural and aerodynamic

wing damping estimates based on wind tunnel tests of a V-22 wing aeroelastic

model. The study implies that the predictions would improve with the inclusion

of better estimates of the wing structural damping.

An improved version of CAMRAD, known as CAMRAD/JA, was completed in
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1988 by Johnson [39]. This version of CAMRAD was used in a study by Kottapalli

and Meza [40] to investigate fundamental differences between the XV-15 stability

with metal blades as compared to the XV-15 with the ATB (Advanced Technology

Blades). The ATB are a composite blade set developed for improved tiltrotor

performance. This study showed that in airplane flight with the XV-15 metal

blades the isolated rotor system is inherently stable, while with the XV-15 ATB

blades the isolated rotor system experiences pitch-flap flutter due to an adverse

chordwise mass distribution. The study also addresses aspects of the control system

stiffnesses which have been shown to have an important influence on the whirl

flutter stability.

Some aspects of tiltrotor aeroelasticity were discussed in a study related to

development of the XV-15 Advanced Technology Blades [41]. This study was

conducted by Boeing under contract with NASA Ames Research Center. The XV-

15 ATB design focused on improving the rotor aerodynamic performance which

resulted in an increase in solidity from .089 for the metal blades to .103 for the

composite blades. Since the rotor diameters are the same for both sets, increased

solidity translates to an increased blade chord and thereby increased torsional

inertia and lower torsion frequencies for the ATB blades. The lower torsional

frequency tends to reduce the whirl flutter stability margins. To overcome this

reduction, aft sweep outboard of the pitch bearings was introduced into the design.

At high collective settings, such as are experienced in high-speed airplane flight,

the sweep reduces blade prccone which, in turn, lowers the steady blade bending

moments and the related pitch-lag coupling. As has been discussed previously, the

pitch-lag coupling generally has a destabilizing influence on whirl flutter stability.

The Boeing study showed that about one degree of aft sweep would restore the

stability margins degraded by the increase in blade solidity.

The development of the ATB blades also fostered a feasibility study by Bauchau,
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Loewy, and Bryan [42] which is relevant to the topic of the present dissertation.

The objective of this analytical study was to design a rotor to change twist dis-

tribution between hover and forward flight modes by about two degrees. The

twist change was to be accomplished using an extension-twist-coupled rotor blade,

taking advantage of the 15-percent change in rotor speed between the two flight

modes of interest. To maintain favorable dynamic characteristics, the design was

constrained relative to the ATB baseline design as follows: same chordwise loca-

tion of the center of gravity at all blade sections, same placement of fundamental

blade in-vacuum frequencies, and same ratio of applied to allowable stresses. The

approach taken in the study for matching the fundamental frequencies was to main-

tain the same mass and stiffness distribution as the baseline ATB, rather than to

allow either one to shift and be compensated by the other. This required the

elastically-coupled rotor to have the same effective beam properties as the ATB

baseline which is a difficult assignment given that the coupling tends to reduce the

bending stiffnesses. Under these constraints, the resulting design achieved only

about a half of a degree of predicted elastic twist change. The study then consid-

ered an approach which relaxed the constraints of frequency matching, resulting

in significant amounts of elastic twist. The associated flap and torsion stiffnesses

were far below the ATB baseline, however. The aeroelastic stability characteristics

associated with these designs could not be determined with available analyses.

Improvements to tiltrotor whirl flutter through active control has also been

considered. In a recent a study by Nasu [43], control laws were developed based on

harmonic balance algorithms and feedback of wingtip velocity and accelerations.

Stability was improved through application of cyclic pitch controls defined by the

closed-loop system. There is some question of the correctness of the model used

because the initial design did not experience an instability at any velocity and,

after reducing wing stiffnesses to one-eighth of their original values, the system
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did not experience an instability until an advance ratio of about 1.5, which is far

above a realistic value. Nevertheless, application of the feedback control law was

shown to improve the damping of this mode.

1.4 Survey of Anisotropic Blade Modeling

There is a potential for improving the performance, aeroelastic stability, and vibra-

tion characteristics of rotorcraft through the use of elastically-coupled composite

rotor blades. To accomplish these gains, one needs to develop aeroelastic analyses.

Currently, comprehensive aeroelastic rotorcraft codes, because of their complexity

and size, are limited to modeling the elastic rotor blade using a one-dimensional

(beam) theory. Thus, there has been recent emphasis on deriving one-dimensional

generally anisotropic beam theories which can capture the important character-

istics of a rotor blade, a structure which is more readily defined using two and

three-dimensional theories. The theory must also be nonlinear so that the impor-

tant rotational effects may be included. The developments leading to nonlinear

generally anisotropic beam theories are examined in this section. Important con-

siderations for modeling composite rotor blades are addressed first. Developments

in general anisotropic beam theories are then addressed, followed by an examina-

tion of theories developed specifically for rotor blade use.

1.4.1 Important Considerations in Rotor Blade Analysis

A beam theory developed for modeling a specific structure, such as a rotor blade,

can be greatly simplified by taking advantage of certain geometric features. This

section will discuss some of the important effects which must be included, as well

as those which can be ignored, in the modeling of rotor blades as beams.

Rotor blades have traditionally been modeled as Euler-Bernoulli (classical)
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beams because they are long and slender. When rotor blades are constructed of

metals, the Euler beam is an adequate blade model because effects associated with

in-plane warping, elastic coupling, and transverse shear deformation are generally

negligible. The effect of torsion-related out-of-plane warping, which significantly

decreases the torsional stiffness of a noncircular beam, has been well understood,

and many cross-section analyses use a free-warping assumption (St. Venant) to

obtain the effective torsional stiffness for an Euler beam model. This approach

has proven adequate for static analysis of rotor blades because blades are usu-

ally of closed-cell construction. For closed sections, free-warping may be assumed

everywhere except for very near a clamped blade root. The boundary condition

restrains the warping of the beam, greatly increasing the torsional stiffness in the

region where the restraint is significant. This region is often referred to in terms of

a decay length, and the effect of warping restraint decays very quickly as one moves

away from the boundary of closed-cell beams. Beams with open cross-sections can

have very long warping decay lengths so beam modeling for these structures must

accurately account for warping.

Beam modeling of composite rotor blades is significantly more complex than

modeling of metal rotor blades because of effects associated with material anisotropy.

Composites are a nonhomogeneous material (fibers and matrix) which are mod-

eled as a homogenous material in laminate theory. The properties of the fiber and

matrix are "smeared" together as a thin orthotropic lamina or ply. When multiple

plies are bonded together in a laminate, the plies may be arranged so that the

structure as a whole exhibits anisotropic behavior. By variation of the laminate

stacking sequence and the fiber directions of the plies, elastic couplings can be de-

veloped between bending, twist, shear, and extension of the laminate. Rotor blades

built up from composite laminates can also be designed to exhibit this anisotropic

behavior. Some form of laminate theory is generally used in cross-section analyses
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to calculate beam stiffnessproperties for compositerotor blades. Finite element

formulations basedon laminate theory have also been established here. The ef-

fect of transverse shear deformation can be significant in composite rotor blades

because the classical stiffnesses may be elastically-coupled to the beam shear stiff-

nesses. This coupling can have a significant effect on blade flexibility in the coupled

directions. Poisson effects can be substantially larger in composite beams which

leads to significant in-plane warping of the cross-section. The in-plane warping

can influence the beam stiffness properties just as torsion-related warping influ-

ences the beam torsional stiffness. The effects discussed in this paragraph must be

considered in beam modeling for composite blades.

Rotational effects must also be considered in development of beam theories for

composite blades. Nonlinear isotropic-beam theories have been developed to model

rotor blade dynamics including effects associated with rotation. The pioneering

formulation of elastic rotor blade modeling was developed by Houbolt and Brooks

[44] assuming linear strains and small deformations. Although rotor blade strains

are assumed small, deflections may be moderate to large. Several studies in the

early 1970's considered the nonlinear behavior associated with moderate deflec-

tions in rotor blades [45-47]. Dynamic and aeroelastic analyses based on moderate

deflection nonlinear beam theory are now state-of-the-art for rotor blades. It is

common in these types of analyses to reduce the number of degrees of freedom

using reduced-basis modal techniques. Inaccuracies associated with use of modal

reduction on highly nonlinear problems have been identified in studies by Bauchau

and Liu [48] and Bauchau and Guernsey [49]. These studies demonstrate the im-

portance of formulating a nonlinear composite rotor blade theory using kinematic

variables which minimize the nonlinearity of the formulation if modal techniques

are to be used. Such rationale for selection of kinematic variables were identified

by Kaza and Kvaternik [50].
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The formulation for rotating beams is more involved than that for nonrotat-

ing beams because the rotation effects can only be included through use of the

geometrically nonlinear theory of elasticity. For a general anisotropic beam, ac-

counting for all the possible nonclassical beam effects in a nonlinear formulation is

undesirable because of size and complexity considerations. One approach for sim-

plifying the formulation is to split the equations associated with the geometrically

nonlinear three-dimensional theory of elasticity into a nonlinear one-dimensional

set of equations and a linear two-dimensional set of equations (nonlinear beam

theory and linear cross-section analysis). This approach has theoretically been

shown appropriate for twisted nonhomogeneous anisotropic blades through use of

a variational-asymptotical method by Hodges and Atilgan [51].

1.4.2 General Anisotropic Beams

In one of the earliest investigations of anisotropic beams, the equations of elas-

ticity were developed for anisotropic cylindrical shells [52]. This study produced

fully-coupled stiffness matrices for both open and closed thin-walled cross-sections,

but did not produce analytical results. Other investigators have considered the

behavior of general anisotropic beams of arbitrary cross-section. A theoretical for-

mulation was developed by Iesan [53] based on an assumed displacement field in

one early study, but no results were given. Other studies developed approzimate

solutions using a two-dimensional anisotropic cross-section model which was solved

using the Ritz method. In one such approach [54] the local and global (spanwise)

deformations were uncoupled, and the two resulting sets of equations were solved

simultaneously. In another such approach [55,56], the global beam problem was

solved using Saint-Venant's inverse method followed by a solution for the local

cross-section deformations. The latter work, while producing equivalent results to

the previous approach, demonstrated that the global beam equations can be solved
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independently of the local cross-section equations. This has special implications

for beam modeling of elastic blades in comprehensive aeroelastic rotor codes, as

will be discussed later. Kosmatka extended this work to include the effects of ini-

tial pretwist on anisotropic beam behavior [57]. This study showed that the elastic

twist developed by an axial load applied to a pretwisted extension-twist-coupled

beam could be dramatically increased or decreased by the location of the initial

twist axis.

The influences of shear deformation and warping in nonrotating dynamic analy-

sis of coupled beams have been investigated by Kosmatka [58] and Kosmatka and Ie

[59]. These studies demonstrated the importance of out-of-plane shear-dependent

warping and in-plane warping (anticlastic deformations) in the free-vibration anal-

ysis of beam modes in which shear deformation has significant effects, such as

bending modes of short beams and high-frequency bending modes of long beams.

Shear deformation also is an important consideration for beams with bending-

shear elastic couplings. Based on the work of Kosmatka and Ie [59], it appears

necessary to include the shear-related warping effects for an accurate prediction of

frequencies of bending-shear coupled beams.

1.4.3 Anisotropic Beam Modeling for Rotor Blades

Early anisotropic beam theories developed specifically for rotor blades concentrated

on development of the basic equilibrium, compatibility, and constitutive relations

for static analysis of an anisotropic beam [60]. These theories were simplified

by assuming a thin-walled construction so that composite laminate characteristics

could be easily incorporated through integration around the contour. The influence

of the shear deformation on the effective beam stiffnesses was considered, but the

influence of cross-section warping was not considered. The importance of the

shear deformation and its effect on anisotropic beam bending was emphasized by
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Rehfield [61] who put forth a clear and concise extension of the Mansfield and

Sobey [60] theory. Rehfield also discussed the influence of torsion-related warping

on the stiffness parameters [62]. The capabilities and limitations of the Rehfield

theory were determined in a series of analytical and experimental studies [19,63,64].

These studies showed that the Rehfield theory could accurately predict the global

response of elastically-coupled thin-walled beams, but errors in bending prediction

increased with laminate thickness. The predictions of stress and strain distribution

through the cross-section were shown to be in error which is attributable to the

thin-wall assumptions.

Composite modeling capabilities were introduced in aeroelastic rotor analy-

ses by researchers at the University of Maryland. Hong and Chopra modeled

composite rotor blades as laminated thin-walled beams [65,66]. These studies rep-

resented hingeless and bearingless rotors as either rectangular cross-section box

beams composed of four separate laminates or as I-beams. Laminate theory was

used to calculate the effective cross-section properties for the beam model which

used displacements associated with classical beam theory. Neither in-plane warp-

ing effects nor transverse shear deformation were considered in the analysis. The

nonlinear governing equations were derived using a finite element formulation, and

the effects of elastic coupling on aeroelastic stability in hover were investigated.

This model was extended by Panda and Chopra to examine the dynamics asso-

ciated with composite rotor blades in forward flight [67]. Here, the effects of ply

orientation and elastic coupling on vibration levels and isolated rotor stability were

addressed. An important contribution of this work was the solution of the blade

periodic response using the finite element in time procedure. The effects of shear

deformation on rotating beam dynamics were examined by Smith and Chopra [68]

in a study which extended the rotor analysis known as UMARC (University of

Maryland Advanced Rotor Code, Hong and Chopra [65,66]) to include explicit
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sheardegreesof freedom. Results of this study showed improvements in the pre-

diction of lower mode frequencies for bending-shear coupled beams. It is clear from

this study that shear deformation effects must be included in the beam analysis

to obtain accurate frequencies of bending-shear coupled beams, but the approach

of using explicit shear degrees of freedom increased the size and complexity of

the formulation. Smith [18] later examined the influence of significant amounts of

elastic coupling on helicopter aeroelastic response and aeromechanical stability.

A nonlinear composite beam theory for blades with curved elastic axes was

developed by Kosmatka [58]. A refined theory for determination of the compos-

ite blade shear center was also presented. The theory accounted for out-of-plane

torsion-related warping, but did not consider shear deformations or in-plane warp-

ing. Results of the study showed excellent agreement in frequency predictions for

some composite curved beams.

The linear periodic response of thin-walled composite rotor blades in forward

flight have been investigated by Rand [69,70]. This study used a detailed model

for cross-section warping, and examined response, loads, and stresses for blades

with extension-torsion and bending-torsion couplings.

Some recent endeavors in the area of composite rotor aeroelastic analyses have

also been made. Fulton [71] developed a composite rotor stability analysis based

on a finite element formulation of the intrinsic, mixed dynamic equations of Hodges

[72] which include the effects associated with shear deformation. Stability results

are presented for a helicopter in hover with hingeless extension-torsion-coupled

rotor blades. Yuan and Friedmann [73] developed a hovering aeroelastic stability

analysis for composite rotor blades with tip sweep and anhedral. This study in-

cluded transverse shear deformation and torsion-related warping restraint effects

in a twenty-three degree-of-freedom beam element. Comparisons of this work are

made with results of Hong and Chopra [65]. Kim and Dugundji expanded the
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previous large-displacement nonlinear beam formulation of Minguet and Dugundji

[74,75] to examine stability in hover.

1.5 Scope of the Present Research

The present research examines the performance, response, and aeroelastic stabil-

ity of a tiltrotor with elastically-coupled composite rotor blades. As the analytical

tools required to perform this task do not currently exist, the focus of this re-

search will be on the development of an appropriate comprehensive aeroelastic

analysis which has the required capabilities: tiltrotor configuration modeling and

anisotropic blade modeling. These capabilities are added to an existing version of

UMARC which is limited to helicopter configuration modeling and isotropic blade

modeling.

The research presented in this dissertation consists of four major parts. The

first three parts address the theoretical development of an anisotropic-blade aeroe-

lastic tiltrotor theory. In the first part, an understanding of the basic stability

mechanisms of a tiltrotor in high-speed axial flight is established using a rigid-

blade analysis. The second part addresses the accuracy of using a one-dimensional

analysis to predict frequencies of elastically-coupled highly-twisted rotor blades.

Here, a new anisotropic beam finite element is developed which uses the same as-

sumed displacement field as the UMARC Euler-beam element. In the third part,

the final anisotropic blade and tiltrotor configuration aeroelastic theory is devel-

oped and implemented in UMARC. The fourth part of the research encompasses

validation of the analysis and investigation of some elastically-coupled blade con-

cepts. The following sections describe in more detail what is accomplished in each

of these four parts.
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1.5.1 Fundamental Study of Tiltrotor Stability

The basic stability mechanisms of a tiltrotor in high-speed axial flight are investi-

gated in Chapter 2. While the studies mentioned in Section 1.3 describe most of

the tiltrotor dynamic behavior trends, physical explanation of many phenomena

are not available. In addition, there has been limited investigation of the role of lag

dynamics in stability. Further, although wing sweep has been recently considered

as a means of increasing tiltrotor cruise velocities [76], there apparently has been

no consideration of the influence of wing sweep on aeroelastic stability.

The objective of Chapter 2 is to ascertain the tiltrotor system design parame-

ters which are important to aeroelastic stability and to determine their influence

on stability in the high-speed axial flight mode using a rigid-blade linear analysis.

This chapter first addresses the math model and theory underlying the analysis

development, and then focuses on a discussion of the results obtained using the

analysis. In particular, the discussion includes the frequency and damping char-

acteristics of a baseline system, the Bell 25-ft diameter proprotor mounted on a

cantilever wing [31], as well as the effects of several key system design parameters

on stability of the baseline system. These include: blade frequencies, wing stiff-

nesses, wing sweep, and blade pitch-flap coupling. All cases assume that the rotor

is operating in the windmilling state, which means that the rotor torque does not

transfer to the wing and that the wing vertical bending rotation degree of freedom

at the wing tip (pylon roll) does not contribute to rotor inplane motion.

It should be noted that the study of Chapter 2 is based entirely on a flap-lag

rigid-blade gimballed rotor mounted on a cantilevered wing. Some limitations of

this model are the exclusion of: blade torsion dynamics, coupled flap-lag blade elas-

tic motion, and fuselage rigid-body motion. These factors limit the applicability

of the model in the prediction of free-flight tiltrotor stability.
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1.5.2 Dynamic Analysis of Elastically-Coupled Blades

Chapter 3 addresses the accuracy of using one-dimensional analysis for the predic-

tion of rotating beam frequencies of elastically-coupled, highly twisted rotor blades.

There are three objectives for this study: 1) show that the degrees of freedom as-

sociated with shear deformation may be statically condensed from the analysis,

2) show that the nonclassical influences associated with cross section warping,

which may become significant as a result of elastic coupling, can be accounted for

without the incorporation of these effects explicitly in the rotating beam analysis,

and 3) determine the potential improvement in efficiency by using higher-order

displacement approximations in a finite element implementation.

A rotating beam analysis was developed based on a formulation of nonlinear

equations of motion and a finite element implementation. The formulation is

derived from basic principles to show how shear deformation and warping enter

the theory. The formulation is nonlinear as is required to capture the essential

centrifugal stiffening effects even in the linearized form of the equations. The

degrees of freedom associated with shear deformation are eliminated through static

condensation of the linear force-displacement relationships. The linear part of the

formulation is implemented as a p-version beam finite element such that the degree

of polynomial approximation for the bending, torsion, and axial displacements

may be independently selected. This implementation is described in the chapter

along with the results of a convergence study. This convergence study will show

the efficiency of certain displacement approximations for a bending-twist-coupled

beam.

Results of the rotating beam analysis are compared with those calculated by

Smith and Chopra [68] for a set of elastically-coupled rotor blades. This will help

to prove the validity of static condensation of the shear degrees of freedom for dif-

ferent modes. Attention is then focused on nonclassical effects (shear deformation
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and warping) and their influenceon the prediction of both rotating and nonrotat-

ing frequenciesfor elastically-coupledand highly twisted beams. Comparisonsare

made with experimental resultsobtained by Chandra [77], 1-D analytical results

obtained with UMARC aspresentedby Smith and Chopra [68], and 3-D analytical

results obtained using the analysisof Hinnant [78]. The formulation is then im-

plementedin UMARC, and resultsarevalidated for severalhelicopter rotor blade

configurations.

1.5.3 Tiltrotor Aeroelastic Theory Development

A new finite-element-based tiltrotor aeroelastic theory is derived based on Hamil-

ton's principle. The derivation involves the development of elastic strain en-

ergy, kinetic energy, and virtual work and is similar to previous derivations of

UMARC [79], but involves new degrees of freedom and terms not previously con-

sidered. Some of the new terms are related to the anisotropic beam modeling, some

to a new formulation for inclusion of important precone effects, and some to the

tiltrotor configuration modeling. There are three new degrees of freedom added

to the five hub degrees of freedom considered in past UMARC derivations, one of

these is associated with blade yaw motion and the other two are associated with a

gimballed rotor system. Also, a large steady angle transformation is introduced to

account for the rotor pylon angle setting, and an elastic wing model is derived from

the elastic blade model. The new structural formulations for the blade, hub, and

wing structural model are derived in Chapter 4, and the new aerodynamic formu-

lations are derived in Chapter 5. Chapter 6 addresses other modifications to the

UMARC helicopter theory necessary to accommodate the tiltrotor configuration:

a rigid analysis for estimating initial controls, linear interpolation of elastic blade

properties, and new coupled trim analyses. Chapter 7 addresses the assembly of

the wing, hub, and blade matrices and other aspects of tiltrotor stability analysis.
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1.5.4 Comparison Studies

The remainder of the dissertation focuses on results obtained with the new aeroe-

lastic tiltrotor analysis, and these results are reported in Chapter 8. The ana-

lytical results obtained for a baseline configuration are compared with published

analytical and experimental results. Following an assessment of the capabilities of

the new aeroelastic tiltrotor analysis, two elastically-coupled rotor blade concepts

are investigated. In one study, the potential use of bending-twist-coupled rotor

blades to enhance tiltrotor stability characteristics is investigated. The influence

of these blades on performance and loads is also considered. In the second study,

the potential use of extension-twist-coupled rotor blades to improve aerodynamic

performance is invetigated. Here, the influence of these rotor blades on stability

characteristics is also considered.
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Chapter 2

Fundamental Study of Tiltrotor

Whirl Flutter

In this chapter, the aeroelastic theory for a tiltrotor in high-speed axial flight is

derived and implemented as a rigid-blade linear analysis for fundamental studies of

whirl flutter stability. The objective is to gain an understanding of important whirl

flutter characteristics, and examine how system design parameters influence these

characteristics. The present chapter first describes the math model and theory

underlying the analysis, then focuses on a discussion of the results obtained using

the analysis. In particular, the discussion includes the frequency and damping

characteristics of a baseline system, the Bell 25-ft diameter proprotor mounted

on a cantilevered wing [31], as well as the effects of several key system design

parameters on stability of this baseline system. These include: blade frequencies,

wing stiffnesses, wing sweep, and blade pitch-flap coupling. All cases assume that

the rotor is windmilling, which means that the rotor torque does not transfer to

the wing and that the wing vertical bending slope degree of freedom at the wing

tip (pylon roll) does not contribute to rotor inplane motion.

While the tiltrotor studies desribed in Section 1.2.3 discuss many tiltrotor dy-

namic behavior trends, they do not always provide a physical explanation for the
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observedbehavior. The present chapter will attempt to provide someof these

explanations. In addition, there hasbeenlimited investigationson the role of lag

dynamics in stability. Further, although wing sweephasbeenrecently considered

as a meansof increasingthe tiltrotor cruise velocities [76], there apparently has

beenno considerationof the influenceof wing sweepon aeroelasticstability.

It should be noted that the study of this chapter is basedentirely on a flap-

lag rigid-blade gimballed rotor mountedon a cantileveredwing. Somelimitations

of this model are the exclusionof blade torsion dynamics,coupled flap-lag blade

elasticmotion, and fuselagerigid body motion. Thesefactors limit the applicability

of the model in the prediction of free-flight tiltrotor stability.

2.1 Description of the Math Model

A detailed derivation of the math model is provided in Appendix A. The follow-

ing paragraph provides a brief description of the math model and some of the

important assumptions used in its development.

A three-bladed gimballed rotor system is assumed. The rotor aerodynamic

model is quasi-steady and assumes a constant lift curve slope with Mach number

corrections. The structural model is a rigid-blade flap-lag model. For a gimballed

rotor system in flap, the rotor tip-path-plane may tilt like an articulated system

hinged at the center of rotation, but must cone like a hingeless system about

a virtual flap hinge. In cyclic lag, the rotor acts like a hingeless system with

deflections defined about a virtual lag hinge, but in collective lag the blades are

free. Perturbations of the rotor speed are considered which have been shown in

past studies to have a significant influence on tiltrotor stability. The rotor system

has six degrees of freedom (fl0, file, ill,, ¢'0, ¢'1c, (is) and associated equations of

motion. The wing-tip motion contributes terms to the rotor equations, and the

net rotor forces are in-turn applied to the wing tip. The wing model is represented
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by beam finite elements having vertical bending, chordwise bending, and torsional

degrees of freedom. The wing lift is included in the wing equations through a quasi-

steady aerodynamic model with Mach number corrections. The wing and rotor

systems are coupled through the degrees of freedom associated with the wing-tip.

The force terms of both the rotor and wing equations contain motion dependent

terms which are brought into the system mass, damping and stiffness matrices.

The steady forces are then set to zero and the resulting system of equations is

solved using standard eigenvalue techniques to obtain its frequency and damping

characteristics. The accuracy of the analysis was verified through comparison of

results with those reported by Kvaternik [16] and Johnson [31].

2.2 Frequency and Damping Characteristics of

the Baseline System

The important in-vacuum frequencies of the baseline wing and rotor system are

listed in Table 2.1. The rotating lag frequency changes with collective pitch (and

therefore forward flight velocity) so its value for the baseline configuration is rep-

resented by a curve as shown in Figure 2.1. The in-vacuum cyclic flap frequency

is related to the gimbal dynamics, and does not change with collective pitch. The

collective flap frequency is dominated by the rotational stiffness contribution, and

thus changes very little with the collective pitch. Since this mode has a high

frequency, the changes as a function of collective pitch setting are neglected. Ad-

ditional data for the rotor system are reported by Johnson [31] and are also given

in Table 2.2. A finite element model for the wing was developed with the equiva-

lent mass and stiffness characteristics of Johnson's modal wing model. The model

parameters for the finite element wing are listed in Table 2.3.

Now consider the system with aerodynamics. The frequency and damping
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of the wing and rotor modes for the baseline system are shown as a function of

forward flight velocity in Figure 2.2. The terms 8-1 and 8+1 represent the low

and high frequency modes of the fixed-frame blade flapping response, respectively,

and similarly ¢- 1 and ¢ + 1 represent the low and high frequency fixed-frame blade

lag response. Since ua is less than 1.0 in air, the 13-1 mode is progressive.

The frequencies of the 8-1 and (- 1 modes cross the fundamental wing mode

frequencies and affect the damping of the wing modes. Abrupt changes of damping

occur in the beam and chord modes where (-1 crosses those wing frequencies,

and the beam and chord mode damping decrease rapidly as the 13-1 frequency

approaches those wing frequencies. The wing chord mode has a damping valley

because the (-1 mode damping is lower than the chord mode damping at the

velocity where the frequencies cross. Conversely, the beam mode has a damping

peak because the (-1 mode damping is greater than the beam mode damping

at the velocity where those frequencies cross. Further indication of this transfer

of damping from the lag mode is offered in Figure 2.3, where the baseline lag

frequency curve has been arbitrarily shifted up by a factor of 1.05. As shown, the

increase in lag frequency shifts the crossing with the chord frequency to a higher

velocity where the corresponding chord mode damping is now lower than the (-1

mode damping. The result is a damping peak rather than a damping valley in the

chord mode.

2.3 Rotor Frequency

In this section, the influence of rotor in-vacuum flap and lag frequencies on tiltrotor

stability is examined in more detail. The mass and inertia properties are held fixed,

so the increase in the in-vacuum flap frequency can be developed only through an

increase in the gimbal hub spring. The lag frequency increase would be obtained

through increases in the blade stiffnesses (both flap and lag). The baseline flap
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frequency is parametrically varied from .9 to 2.5 of its original value (the lower

factor of .9, while physically unobtainable for flap in vacuum, is used to provide

continuity of the trends). Becausethe lag frequency changesas a function of

velocity, for this study the lag frequencywas varied by shifting the baseline lag

frequency curve by a factor ranging from .9 to 2.5. Extreme variations of flap

and lag frequency are unlikely to be obtainable in design practice, but they are

of academic interest so that physical reasoning of the trends within the design

range may be established. The in-vacuum flap and lag frequency variations were

performed independently, meaning that the flap frequency was held at its baseline

value while lag frequency was varied, and vice versa. In addition to showing the

direct effects of flutter speed as a function of flap and lag frequency, this study

will provide insight into the flutter mechanism. By better understanding this

mechanism, the rotor and wing properties may be selected to enhance tiltrotor

stability.

The results of sweeping through values of uZ and u¢ on the baseline tiltrotor

configuration are illustrated in Figure 2.4 and Figure 2.5, respectively. Several ob-

servations based on these plots are described in the following numbered paragraphs

(italicized). The paragraphs also include explanations (non-italicized) which are

based on a sequence of frequency and critical damping plots reflecting parametric

changes in the flap and lag frequencies. The results of changing flap frequency are

shown in Figures 2.6 and 2.7 while the results of changing lag frequency are shown

in Figures 2.8 and 2.9.

1. As shown in Figure 2.4, the beam and chord mode 1_" rise sharply with an

increase in ua at low values of u_ (uo factors .9 to 1.2). There are two effects

working here. One is a decrease in the/3-1 frequency, and the other is an increase

in the wing torsion frequency. The decrease of the/3-1 frequency increases the

velocity at which it crosses above the _-1 frequency (note sequence of Figures 2.2,
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2.6, 2.7). As long asthe (- 1frequencyremainsbetweenthe beammodefrequency

and the/3-1 frequencythere is little interaction between the flapping and wing

motions. The low lag frequency acts like a barrier, preventing coalescence of the

low flap frequency with the beam mode, until the low flap frequency is able to cross

above it. Notice that the fl-1 mode changes from a progressive mode at 1.0u_

(Figure 2.2) to a regressive mode at higher ua and low velocities (Figures 2.6,

2.7). This is because the 53 effect is small at low velocities, so the effective ro-

tating frequency is above 1.0 until the 63 effect lowers it. As u_ increases it takes

progressively higher velocities to lower the effective flap frequency, which is why

the transition from the regressive to progressive flap mode occurs at increasingly

higher velocities. The increase in torsion frequency further separates the beam and

torsion modes, which is stabilizing as will be shown later in the wing frequency

study.

2. As shown in Figure 2.4, a (+1 mode instability occurs at high uz factors

(ut_ factor above 1.2). The flutter speed ,V]', drops sharply over the range 1.2uz to

1.6u_ then increases over the range 1.6u_ to 2.5u_. The rotor instability shifts from

a (+1 mode to a/3+1 mode at about 1.guz. A (+1 rotor instability occurs above

about 1.2uz because of a flap and lag frequency coalescence in the rotating frame.

In the fixed frame, the high frequency modes cross which results in an instability

in the highest frequency rotor mode, _+1. As uz increases beyond 1.6u_(these

plots not shown), the/3+1 frequency first crosses the _+1 frequency curve then

coalesces weakly with it as it falls below the (+ 1 frequency. The weakening of the

coalescence gives a higher V!* for the (+1 instability. Further increases in uz result

in the rotor instability shifting from the (+1 mode to the/3+ 1 mode. This occurs

at the u_ where the/3+1 frequency becomes higher than the (+1 frequency.

3. As shown in Figure 2.4, the wing beam mode does not become unstable above

about 1.4u_. There are two reasons for this. First, the flap and lag modes become
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highly coupleddue to the coalescenceof thosefrequencies(as discussedabove) so

there is only a slight destabilizing influence of the blade flap mode on the beam

mode. The second reason is the increased separation of the wing beam and torsion

frequencies which has a stabilizing effect on the wing mode (notice increase in

torsion frequency in sequence of Figures 2.2, 2.6, 2.8 even at low velocities). As

u_ increases, the torsion frequency also increases because of mechanical coupling

between the rotor flap and wing torsion motions.

4. As shown in Figure 2.4, the win 9 chord mode can become unstable even

at hi9h u_ factors. This is because the chord mode is not strongly coupled to

any other modes. Its flutter speed continues to increase as u_ increases due to

decreasing interaction with the rotor flapping mode. It should be noted that the

chord mode may be more strongly coupled with the beam and torsion modes in the

free flight condition (not considered in the present study) through inertial coupling.

5. As shown in Figure 2.5, the chord mode V7 increases with increases in v_

factor, until about 1.5v¢, then does not increase further. At low values of v¢ factor

the damping in the chord mode is strongly influenced by the location of the _-1

frequency with respect to the chord frequency, particularly when there are no other

frequencies between the two. Each subsequent change in the lag frequency creates

a large change in the chord mode V/'(notice where the _'-1 frequency crosses the

chord frequency in the sequence of Figures 2.2, 2.8, 2.9). As the lag frequency

factor increases above 1.5, the _'-1 frequency becomes higher than the torsion

frequency for most velocities, so there is little influence of further increases in v¢

factor on the chord mode instability.

6. As shown in Figure 2.5, the beam mode V7 first increases with v¢ factor,

reaches a maximum, then decreases with t,¢ factor to a value lower than that for

the baseline configuration (1.0u_). The beam mode V7 initially increases with u¢

factor because damping of this mode is increased through coalescence of the beam
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frequency with the (-1 frequency (note where the /3-1 and (-1 frequencies

cross in relation to the beam mode frequency in the sequence of Figures 2.2, 2.8,

2.9). As the lag frequency increases, the (-1 mode crosses the beam mode at

higher velocity, where there is more damping available to be transferred to the

beam mode. With further increases in v¢ factor the/3-1 frequency coalesces with

the beam frequency without any interference from the (-1 frequency (Figure

2.9). The coalescence between the beam and/3-1 frequencies becomes dominant

as v¢ continues to increase, resulting in a large decrease in the beam mode V/*.

Also of interest is the trend of the beam mode flutter curve with respect to v¢ in

comparison with that of the chord mode (see Figure 2.5). As noted previously,

the beam mode instability becomes flap mode dominated at about 1.3_¢, which

corresponds to the peak in its flutter curve. The chord mode instability becomes

flap mode dominated at about 1.7v¢, which corresponds to the plateau in its flutter

curve. The instability of the beam mode becomes flap mode dominated at a lower

v¢ factor than the chord mode because its frequency is closer to the/3-1 frequency

than is the chord mode frequency. The beam mode flutter curve eventually levels

off at a very high v¢ factor, above that at which the chord mode levels off, because

the beam mode is coupled to the torsion mode through the wing-chordwise mass

offset. The beam mode flutter continues to be influenced by the lag frequency until

the (-1 frequency ceases to cross or coalesce with the torsion frequency.

7. As shown in Figure 2.5, the chord Vf is lower than the beam V_ over

the range of 1.0_,_ to 1.4u_. This is because there is increased damping in the

beam mode due to its interaction with the lag mode. As shown in the sequence

of Figures 2.2 and 2.8 the (-1 frequency crosses the beam mode frequency at

increasingly higher velocities as the t, C factor is increased in this range (1.0 - 1.4

u¢). With higher velocity there is greater damping in the lag mode, some of which

is transferred to the beam mode during the frequency coalescence. Little increase
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in dampingis introduced into the chord mode becauseof the low velocity at which

those frequenciescross. Thus, for the cited range of v_ factor, the chord mode

instability occurs before the beam mode instability.

The most significant results of the rotor frequency study are that optimum

flap and lag frequencies exist which can significantly increase the flutter velocity

of tiltrotor systems. The flutter velocity is shown in Figure 2.4 to increase from

1.23 to about 1.42 by increasing the flap frequency by a factor of 1.35, and in

Figure 2.5 from 1.23 to about 1.33 by increasing the lag frequency by a factor

of 1.35. These represent increases in flutter velocity of about 13% for the flap

case and about 8% for the lag case. Tile results associated with tuning of the lag

frequency are especially important because tuning of the lag frequency has more

practical relevance than does tuning of the flap frequency. This is because tiltrotor

systems have been stiff-inplane so that an increase in inplane stiffness would not

have a severe impact on loads.

It is also important to note that the stability improvements presented above

came about because of the coalescence of certain frequencies. The low rotor fre-

quencies (/3-1 and if-1) are important system design parameters, as their place-

ment with respect to each other as well as the fundamental wing modes can greatly

improve or degrade the stability of the system. Based on the rotor frequency study,

a general rule is to design the _'-1 frequency to fall between the/3-1 frequency

and the lowest fundamental wing mode in the velocity range preceding the flutter

velocity. The lag frequency in this case couples with the flap frequency, delaying

its interaction with the wing modes. An even better solution is to have the low

lag frequency cross the lowest fundamental wing mode just as that mode begins

to coalesce with the low flap frequency. In this case, the damping of the wing

mode is increased by the lag mode, delaying the instability to a higher velocity.

For maximum irifluence, the lag frequency should cross the wing mode at the high-
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est possible velocity (but before the flap mode drives an instability). This will

maximize the damping in the lag mode which is then available to be transferred.

Based on the results of the above study, as well as results of other studies

not reported here, there are three main mechanisms which are responsible for

instability. These may be described as lag-dominated whirl flutter, flap-dominated

whirl flutter, and rotor resonance. In lag-dominated whirl flutter, the lag mode

weakens the coupling of the flap and wing modes while increasing the coupling

between the flap and lag motions themselves. As a result, the stability of the

system is more sensitive to lag-motion-related forces than to flap-motion-related

forces. In flap-dominated whirl flutter, the flap motion becomes highly coupled

with one or more wing modes and there is negligible coupling with the lag motion.

Rotor resonance is characterized by coalescence of the high-frequency flap and lag

modes, which results in an instability of the higher frequency mode.

2.4 Wing Frequency

The effects of the wing beam, chord, and torsion frequencies on tiltrotor stability

are examined in this section. The wing frequencies, as given in Table 2.1, are

altered through parametric variation of the wing baseline stiffnesses. In the first

part of this study, the variations are performed independently, as they were in the

rotor frequency study. In the second part of this study, combined changes in wing

stiffnesses are examined.

The results of independent variations of the three wing stiffnesses by factors

of .50 to 1.50 of the baseline value are shown in the plots of Figures 2.10-2.12.

The plots show the change in flutter speed for each of the three wing modes for

each case. These results indicate that the flutter velocity is more dependent on

the placement of the wing frequencies relative to each other than on the placement

of the wing frequencies relative to the rotor frequencies. This is most evident for
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the caseof torsional stiffnessvariation (Figure 2.10). The beam mode stability is

greatly reducedby a reduction in the torsion stiffness.The rotor frequencystudy

showedthat the beamstability changesrelative to changesin the beam or rotor

frequencies.Sincethe rotor frequenciesand beam mode frequencyare unchanged

for variationsof torsion stiffness,the reducedbeammodestability must insteadbe

due to placementof the torsion frequencyrelative to the beamfrequency. Basedon

the abovereasoning,the beammodeflutter speedwould be expectedto decrease

rather than increasewith an increasein beamstiffness.This is indeedthe caseas

is illustrated in Figure 2.11.

The chord mode flutter velocity is shownto increasewith an increasein chord

stiffnessin Figure 2.12,while the flutter velocitiesof the beam and torsion modes

remain relatively constant. The changein flutter velocity of the chord mode is less

dramatic than wasshownfor the beam mode in the previous two cases. This is

becausethe chordmodeisnot highly coupledto either of the other two wing modes,

and the extent of stiffnessvariation doesnot move the chord frequencyaboveor

below the other wing frequencies.Sincethe chord mode is not highly coupled to

either the beam or torsion modes,placementof the chord mode frequency with

respectto the other wing frequenciesis lessimportant.

As wasshownin Figure 2.2, the flutter velocity of the baselinetiltrotor system

is about 1.23. In the next study, the combinations of wing stiffness required to

maintain flutter at V* = 1.23 are examined. Three flutter boundaries, correspond-

ing to constant beam stiffness values ranging from .50 to 1.50 of the baseline value,

are shown in Figure 2.13. Each curve represents the combination of torsion and

chord stiffness (shown as a factor of the baseline value) required to maintain the

baseline flutter velocity. As the beam stiffness is increased the minimum required

torsion stiffness also increases (for EIc above the 1.0 factor). This supports earlier

findings that stability is improved through increased separation between the beam
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and torsion frequencies. The plot also shows that the chord stiffness requirements

are almost constant for GJ factors above about 0.8.

The most significant result of the wing frequency study is that the wing torsion

to beam frequency ratio is an important design parameter for a tiltrotor system.

It is clear that the separation between these frequencies has greater importance

than the placement of the beam frequency relative to the rotor frequencies. If

this were not the case then the flutter velocity would increase with an increase in

beam frequency (because of an increased separation between the flap and beam

frequencies) rather than decrease (because of increased participation of torsion

in the beam mode). It is also noteworthy that the chord frequency significantly

influences only the chord mode V/. Thus, it is possible to improve the chord mode

V/ independently of the beam mode V/, and vice versa. Since the chord mode

instability occurs at a velocity very close to that associated with the beam mode,

any design changes aimed at increasing the stability of the complete system must

take both modes into account.

2.5 Forward Swept Wing

This study examines the effects of sweeping the baseline wing forward. The pylon

and rotor system remains oriented in the flow direction the same as for a straight

wing. The sweep is varied while maintaining wing length (measured along the

elastic axis), streamwise chord length, and rotor radius constant. While both wing

length and rotor radius cannot be maintained constant with sweep on an actual

tiltrotor aircraft due to rotor-fuselage clearance requirements, this assumption is

employed in the analysis to isolate the effects of forward sweep. Divergence of

the system was considered, but was found to occur at velocities much higher than

those associated with flutter, even at high wing sweeps. This is not surprising

beacuse 1) the wing stiffnesses associated with tilt rotors are much higher than
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that associatedwith conventionalfixed wing aircraft, and 2) the flutter boundaries

associatedwith tilt rotors are lower than thoseassociatedwith conventionalfixed

wing aircraft (primarily due to the largerotor flapping motion).

The influence of wing forward sweepon flutter is illustrated in Figure 2.14.

This plot showsthat the beam and chord mode V/" come together for the swept

wing, with a reduction in system flutter velocity of about 8 percent over a sweep

from zero to -45 ° . The cause of this reduction has two possible sources: the change

in wing frequencies due to a shift in pylon mass or the change in perturbation force

components due to reorientation of the rotor with respect to the wing. The wing

frequencies are altered by the change in pylon first and second mass moments of

inertia in pitch about the wing elastic axis. This primarily effects the wing torsion

frequency which increases with sweep. Based on the wing frequency parametric

study, this should increase the beam mode V/" because of the increased separation

between the beam and torsion frequencies. The plot of Figure2.14 shows that

the beam mode t_" is not increased. Hence, the wing frequency change must not

be the dominating influence for the beam or chord mode instabilities. This is

confirmed in Figure2.15 which shows the beam mode instability boundaries for

two cases: one with the normal orientation of the wing pylon in the flow direction

(and a corresponding decrease in torsion frequency) and one with the pylon mass

distribution remaining the same as for the straight wing (as if tile pylon orientation

with respect to the wing was unchanged by sweep) such that the wing frequencies

are nearly constant with respect to sweep. As shown, the beam mode t_" decreases

even further with the baseline wing frequencies, indicating that the wing frequency

changes associated with sweep have a stabilizing influence. The decrease in flutter

velocity must then be attributed to a change in the destabilizing forces from the

rotor.

In Figures 2.16 and 2.17, the stiffness changes required to maintain the straight
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wing flutter velocity (V/" = 1.23) for the swept wing are shown. The plot of Fig-

ure 2.16 shows that a substantial increase in chord stiffness is required to maintain

V]* = 1.23, while only a slight increase in torsional stiffness is required. The chord

stiffness increase maintains the chord mode V/" while the torsion stiffness increase

maintains the beam mode V7. Based on the results of the previous section, it might

be assumed that an increase in beam stiffness is required to overcome the addi-

tional destabilizing force components associated with wing sweep if one desires to

maintain the straight wing flutter velocity. However, the plot of Figure 2.17 shows

that a decrease in beam stiffness of roughly 10-15% is required. The two plots

of Figures 2.16 and Figure 2.17 suggest that the ratio of wing torsion to beam

frequency is still an important factor even with wing sweep. The additional desta-

bilizing forces associated with wing sweep couple these two modes more than for

the straight wing case. While the coupling between the torsion and beam modes is

through the pylon and rotor mass offset for the straight wing, these modes are ad-

ditionally coupled through the rotor system forces when wing sweep is introduced.

With increased coupling, the requirement for frequency separation between the

modes is increased. The wing sweep tends to increase the frequency separation,

but not enough to overcome the rotor force coupling effects, so the net effect is

decreased flutter velocities. The torsion and beam modes remain largely uncou-

pled from the chord mode. For the chord mode, a substantial increase in chord

stiffness is the only alternative for maintaining straight wing flutter velocity at

large forward wing sweep angles.

2.6 Pitch-Flap Coupling

Pitch-flap coupling is an important and necessary parameter for basic tiltrotor

designs because of flap clearance considerations. There are four basic methods for

obtaining adequate flap clearance of the blade from the wing. One is an adjustment

56



of the mast length, the second is an increase of flapping restraint, the third is

use of forward wing sweep, and the fourth is employment of kinematic pitch-flap

coupling. Extension of the mast length is very destabilizing while increase of

flapping restraint drives blade loads to an unacceptable level. The destabilizing

effects of forward wing sweep have been discussed in the previous section. The

employment of pitch-flap coupling can significantly reduce blade flapping with

negligible effect on the blade loads, but it also has a destabilizing effect on stability.

Positive pitch-flap coupling (here defined as blade flap up producing blade pitch

up) is given by negative 63 and decreases flap frequency while negative pitch-flap

coupling is given by positive 63 and increases flap frequency.

The plot of Figure 2.18 shows the flutter velocity boundaries associated with

changes of 63 (the baseline configuration has t_3 = -15°). This plot shows that

positive 63 is more suitable with respect to stability considerations than negative

63, which is generally true for stiff-inplane rotor systems as reported by Gaffey [6].

As shown, positive 63 results in a rotor instability at relatively low values of 63. This

instability is best explained by considering the blade frequencies in the rotating

system. The rotor instability is caused by resonance of the blade flap and lag

frequencies. The resonance occurs because the lag frequency of a stiff-inplane

rotor decreases with velocity (discussed in rotor frequency section) while the flap

frequency increases (because of positive 63) until at some velocity the two coincide.

With negative 63 the effective flap frequency decreases with velocity, so it never

meets the lag frequency in the velocity range of interest.

The plot of Figure 2.18 also shows that the mode of instability changes from

a chord mode at small negative 63 to a beam mode at large negative 63. While

both the chord and beam modes are stabilized with decreasing negative 63, the

beam mode is stabilized more than the chord mode because of increased separation

between the torsion and beam frequencies (decreased negative 63 increases the flap
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frequency which increases the torsion frequency). Consequently, there is a range

of negative 63 where the chord mode instability becomes critical.

2.7 Summary

The influences of several key system design parameters on tiltrotor aeroelastic

stability in the high-speed axial flight mode have been examined. The findings

have substantiated earlier work performed by other researchers as well as identified

some new trends and the physical reasonings behind them. Some of the important

past conclusions which have been substantiated are as follows:

1. Beam and torsion frequency separation has a large influence on stability of

the beam mode.

2. Negative 63 is more effective than positive 63 with respect to stability con-

siderations for a stiff-inplane rotor system.

The results of this study have also identified and explained at least two impor-

tant effects which have not been previously discussed in the open literature:

1. Lag frequency tuning appears to be a practical method for increasing axial

flight flutter velocities. The blade lag frequency may be selected to reduce the

coupling of the /3-1 and wing beam modes, thereby increasing the wing beam

mode damping.

2. An increase in forward wing sweep is destabilizing. This is because of

an increase in the rotor destabilizing force components in the beam and chord

directions. The wing frequency changes associated with the reorientation of the

pylon with sweep have a stabilizing influence on the beam mode, but this effect is

dominated by the rotor force changes.
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Table 2.1: Frequencies of the baseline system.

Rotating Blade

Freq. (per rev)

In Vacuum

u_

uO o

u_

UCo

Wing Freq. (per rev)

beam

chord

torsion

1.02

1.85

see Figure 2.1

0

0.42

0.70

1.30
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Table 2.2: Important parametersof the baseline system.

Number of blades

Radius

Lock number

Solidity

Lift curve slope

Pitch/flap coupling

Tip speed

Rotational speed

Blade Inertias

h

/;

/;o

/;

/;oo

Blade Inertias for windmilling

/_0o

V(o

3

12.5 ft.

3.83

.089

5.7

-.268

600 ft/sec

48.0 rad/sec

105 slug-ft 2

1.0

.779

.670

.670

1.0

1.0

.787

1.035

1.212

6.160

1.0

1.0

0.0

6O



Table 2.3: Important parametersof the baselinewing.

Span,y_,/R

Chord,c_,/ R

Mast height, h/R

No. of Elements

Value

Length, l/ R

<U__/)Ic9 *, 2

S,, , (N-__ )
2

Mass ,( N___)

E Ib * ( N l--h_a22)

EIc*, _ )

G J* _ _ j

Aero. Center,e/c

1.333

.413

.342

4

Root Element

4.55

1.

.05

1.

3.13e7

8.48e7

1.62e7

.051

2nd Element

4.55

1.

.05

1.

3.13e7

8.48e7

1.62e7

.051

3rd Element

4.55

1.

.05

1.

3.13e7

8.48e7

1.62e7

.051

Tip Element

(+ Pylon)

.

63.3 cos: A

9.09 cos A

14.54

3.13e7

8.48e7

1.62e7

0.
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Figure 2.1: Blade lag frequency as a function of velocity.
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Figure 2.2: Frequency and damping as a function of velocity for the baseline (1.0va,

1.0u¢) system.

63



o)

3

2 _ 15+1[p]
ii |l

130
t

0 0.5 1.0 1.5

(a) Frequency. V*

2.0

.15 1_1

13o
.10

.05

0 0.5 1.0 1.5 2.0

(b) Damping. V*

Figure 2.3: Frequency and damping as a function of velocity for u¢ increased by

the factor 1.05.
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Figure 2.5: Flutter velocity as a function of u¢ factor.
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Figure 2.6: Frequency and damping as a function of velocity for 1.2u n.
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Figure 2.7: Frequency and damping as a function of velocity for 1.Svo.
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Figure :2.8: Frequency and damping as a function of velocity for 1.2u¢.
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Figure 2.9: Frequency and damping as a function of velocity for 1.5u¢.
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Figure 2.10: Flutter velocity of the wing modes with parametric variations of wing

torsion stiffness.
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Figure 2.11: Flutter velocity of the wing modes with parametric variations of wing

beam stiffness.
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Figure 2.12: Flutter velocity of the wing modes with parametric variations of wing

chord stiffness.
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Figure 2.13: Stability boundaries of constant V/" = 1.23 for combined stiffness

variations.
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Figure 2.14: Flutter of the swept forward wing.
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Figure 2.15: Beam mode flutter of the swept wing for two pylon orientation cases.
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Figure 2.16: Torsion and chordwise stiffness requirements for maintaining straight-

wing flutter velocity (V/ = 1.23, EIb at baseline).
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Figure 2.17: Beamwise and chordwise stiffness requirements for maintaining

straight-wing flutter velocity (V/" = 1.23, GJ at baseline).
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Figure 2.18: Flutter velocity boundaries as a function of the pitch-flap coupling.
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Chapter 3

Dynamic Analysis of Pretwisted

Elastically-Coupled Rotor Blades

This chapter will address the accuracy of using one-dimensional analysis for the

prediction of rotating beam frequencies of elastically-coupled, highly-twisted ro-

tor blades. There are three objectives for this study: 1) show that the degrees

of freedom associated with shear deformation may be statically condensed from

the analysis, 2) show that the nonclassical influences associated with cross-section

warping, which may become significant as a result of elastic coupling, can be ac-

counted for without the incorporation of these effects explicitly in the rotating

beam analysis, and 3) determine the potential improvement in efficiency by using

higher-order displacement approximations in a finite element implementation. Be-

cause of these objectives, a new rotating blade analysis is formulated which is not

associated with the UMARC analysis. This new analysis is used to test the present

formulation so that only those concepts which prove effective are used in the next

level of forumlation, the full aeroelastic tiltrotor model derived in Chapters 4-7.

The potential for decoupling the local analysis from the global analysis was

discussed in Section 1.1.1. An explicit formulation for this approach is proposed

in the present chapter which considers the influence of nonclassical effects only on
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the effective beam stiffness properties and eliminates degrees of freedom associated

with shear deformation through static condensation. This formulation leads to a

rotating beam analysis based on only those degrees of freedom which have been

used for classical beam analyses. A second analysis, which should consider all the

possible nonclassical influences, but may be based on linear theory, is used to de-

termine the effective beam properties for the first analysis. If such an approach

is accurate for geometries and materials typical of rotor blades, then rotor anal-

yses based on isotropic materials and classical beam theory may be modified to

incorporate composite materials and nonclassical effects.

A rotating beam analysis was developed based on a formulation of nonlin-

ear equations of motion and a finite element implementation. The formulation is

derived to show how shear deformation and warping enter the theory. The formu-

lation is nonlinear as is required to capture the centrifugal stiffening effects even

in the linearized form of the equations. The degrees of freedom associated with

shear deformation were eliminated through static condensation of the linear force-

displacement relationships. The linear part of the formulation was implemented as

a p-version beam finite element such that the degree of polynomial approximation

for the bending, torsion, and axial displacements may be independently selected.

This implementation is described along with the results of a convergence study.

This convergence study shows the efficiency of certain displacement approxima-

tions for a bending-twist-coupled beam.

Results of the present rotating beam analysis are compared with those produced

by Smith and Chopra [68] for a set of elastically-coupled rotor blades to show

that static condensation of the shear degrees of freedom is valid for the modes

considered. Attention is then focused on nonclassical effects (shear deformation

and warping) and their influence on the prediction of both rotating and nonrotating

frequencies for elastically-coupled and highly-twisted beams. Comparisons are
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made with experimental results obtained by Chandra [77], 1-D analytical results

obtained with UMARC as presented by Smith and Chopra [68], and 3-D analytical

results obtained using the analysis of Hinnant [78].

3.1 Energy Formulations

For the formulation of strain and kinetic energy, the blade is assumed to be a long

and slender beam, and constructed from anisotropic materials such that displace-

ment modes may be elastically coupled. The blade may deform in extension ue,

lag bending v, flap bending w, and torsion ¢, and both built-in pretwist and elastic

twist deformation may be large. The equations of motion are formulated based on

the form of Hamilton's variational principle typically used in rotor analysis,

,SII = _ti2(SU - ,ST - $W) dt = 0 (3.1)

The potential energy variation g.] is developed entirely by the elastic strain of

deformation, the kinetic energy variation _ is developed from blade velocity terms,

and the work variation bW is zero in the present formulation (no external loading

is considered, the system is conservative).

As the formulation presented here is nonlinear and explicit, the number of terms

in the energy expressions can quickly grow to an unmanageable size. Further, many

of the terms may be negligible compared to other important terms. To reduce the

number of terms to only those of significance, an ordering scheme is employed where

terms of O(e "+2) and higher are eliminated in the presence of terms of O(cn). All

displacement variables defined in this formulation are assigned an order of e with

two exceptions. The axial displacement ue is of order e2 and the twist deformation

¢ is of order one. The latter exception results from making the analysis accurate

for rotor blades with very large elastic couplings associated with twist deformation.

82



3.1.1 Geometry and Coordinates

The present formulation considers only the shaft-fixed response (no hub degrees of

freedom. The hub motion and other tiltrotor related parameters will be considered

in Chapters 4-7. The shaft-fixed formulation requires four coordinate systems.

The inertial coordinate system is aligned with the shaft as shown in Figure 3.1.

A rotating reference frame (L,Jr,/_'r) has the same origin as the inertial reference

frame, but rotates with the blade such that its x-axis is in the plane of rotation.

An undeformed-blade reference frame (],,,3,,,/f_)is defined with its z-axis directed

along the elastic axis of the undeformed blade as shown in Figure 3.2. The elastic

part of the blade is offset from the center of rotation a distance hx]u. A cross-

section reference frame (]c,J¢,/_'c) is defined with origin at an arbitrary position

(hx + z)L, along the elastic axis of the blade, and with origin on that axis acting as

the reference point for the cross section. The unit vector Jc is directed along the

chord direction of the blade cross section while/_'_ is defined by the cross product

of lc and Jc. Thus, the cross-section system is an orthonormal vector set which is

rotated by the amount of twist associated with an arbitrary spanwise location of

the undeformed blade. A deformed reference frame (]a,Ja,I_'a) is identical to the

cross-section set before deformation, but translates and rotates with the bending

and twist of the rigid cross section plane to a new position after deformation.

The unit vector triads of each coordinate system are related by the following

equations:

/ {,}L = IT,,] j,

kr k,

J,, = L

(3.2)

(3.3)
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k0 /?u

where the transformations matrices are given by:

COS _)

[Trl] = - sin

[T.r]

sin _/, 0

cos ¢ 0

0 0 1

cos/3p 0 -sin_p

0 1 0

sinl3p 0 cosl3p

1 0 0

0 cos Oo sin Oo

0 -sinOo cosOo

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

The transformation between the deformed and cross-section systems [Talc] is derived

later in this chapter.

3.1.2 Strain Energy Derivation

Consider the position of a point on the cross-section of a rotor blade before defor-

mation with position vector given by

F0 --- (hx + x)/_c + r/Y_ + (/x% (3.9)

After deformation, the position vector is given by

/_ = P_o +/_E +/_w (3.10)
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where /3r0 represents deformed position of the cross section reference point, /_E

represents deformation associated with the rigid rotation of the cross section, and

/_w represents deformation associated with warping of the cross section. The

position vectors are defined as follows:

15to = (h_ + x + u0)L -4-v0L -4- w0/_'c (3.11)

/_z = 0]_ + rlL + _'/Ic (3.12)

f_w = W,,_ + I,V,,]_ + Wjf_ (3.13)

where W,,, W,_, and W_ are warping displacements defined as

Wu "-- Ut_uA dr W'cs_.)uQ ' -4- O,l/)uMrl + Utcs_JuQ" + O(_3uM ¢ + _)tCu T (3.14)

W,_ = u'_b,TA + w:o_,70¢ + 0,7¢,7M,, + U:,¢,70,, + O_[',TM, + ¢'¢,T (3.15)

W_ -- utl/3¢A + w:,_3iQ; + On_[,¢M" "l- u:,_)¢Q, + O(_)¢M ( + ¢'_3_T (3.16)

where subscript s denotes shear strains due to shear deformation and/9 is rotation

due to bending. The warping terms represent nonclassical contributions to the

displacements as a result of cross section deformation. The notation for the warping

_bii gives the displacement in the direction i associated with a load j, and the

magnitude of the displacement in the i direction is shown to be proportional to

the displacement associated with the load direction. The displacements associated

with warping are in general small for beam structures, with only a few exceptions.

The most well-known exception is the out-of-plane warping associated with torsion

of noncircular beams (_P_T in the present formulation). With a completely general

approach to anisotropic beam theory, any of the 18 warping terms shown above

could be significant for a particular configuration. Thus, for the general approach,

all of the warping terms would be maintained within the ordering scheme, even

though for most practical cases all but a few terms could be eliminated.

However, rotorcraft aeroelastic analysis, based on one-dimensional beam mod-

eling, generally only requires knowledge of the global blade behavior, and as such
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the warping displacementsneednot be includedexplicitly in the aeroelasticformu-

lation. The important contribution of warping hasbeenshownin past studies to

bea reduction in the effectivebeamstiffnesses.The warping unnecessarilycompli-

catesdevelopmentof the one-dimensionalanalysisand will be eliminated except

for somekey terms which have beenshown to be important, even for isotropic

beams. The other effectsof warping can be captured in a detailed crosssection

(local) analysiswhich is uncoupledfrom the beam (global) analysis.

The warpingterms whichare retainedarethe out-of-planetorsion-relatedwarp-

ing ¢,T, and the two out-of-plane shear-relatedwarping terms ¢'`Q¢and ¢'`Q,,. If

the Timoshenko-typesheardeformation model is applied (the crosssectionis as-

sumedto remain plane), then ¢'`0¢ = ( and ¢'`0, = r/. The deformed position

vector is then rewritten with/_,_ = [¢'¢,,7" + v'co_ + w'c,(]]_ as

[l = ({h,,+x+uo, vo, wo}+{(¢'¢_,T+V'or/+W'o_),rh(}[Tdc]) 3.17)

IicJ

where Tec is the transformation matrix between the deformed and cross-section

coordinate systems, and will be derived in the next paragraph.

The sequence of rotations for transformation from the undeformed cross-section

axis system to the deformed axis system is {0_, -0 7 ,¢} where 0_ is the Euler bending

rotation in the lead-lag plane (given no pretwist), 0, is the Euler bending rotation

in the flapwise plane (given no pretwist), and ¢ is the elastic twist which may be

a large angle. The transformation matrix is then defined as

[rdc]

1 0 0

0 cos ¢ sin ¢

0 -sine cos¢

1 0 -6_

0 1 0

_,7 0 1

1 _ 0

-_ 1 0

0 0 1

(3.18)

where the small angle assumption has been employed for the bending rotations.
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The rotations may be written in terms of the cross-section kinematic variables as

0¢ = (vc,x - fl,_wc)Jc (3.19)

-0. = (wc,_ + _,xv_)[fc (3.20)

which, when substituted into Eqn. 3.18, gives the transformation matrix as

where,

[Td_]=

' wcO_ ' '1 vc- wc+v_O o

_3_sin ¢ sin ¢

+ cos

_, cos¢ cos

- sin

(3.21)

_, = -(_: , , ,- wcOo)(W _ + vcOo) (3.22)

This transformation agrees with that of Kosmatka [55] if ¢ is assumed to be a

small angle.

The strains are developed in terms of the displacements by substituting the

derivatives of the position vectors into the strain component definitions as given in

Wempner [80]. The position vectors have been defined in terms of the cross-section

coordinates, and the derivatives were calculated as follows:

7,x = {1,0,0} (3.23)

_,_ = {0,1,0} (3.24)

7 z = {0,0,1} (3.25)

/_x = {G_,, Gx2, G_z} (3.26)

R,,7 = {G,7,,G,_2,G,73} (3.27)

R,¢ = {Go,Go, G(z } (3.28)
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wherethe Gi terms are defined within the ordering scheme as:

Gxl

Gz2

Gz3

Gnl

Gn2

Gn3

GO

GO

G_3

= - sin ¢ + (vcwcOao - vcv'cO'o + wcw'cO'o - v'cw'c) cos ¢

= COS

-- 1 + u'c - r/x, 7 -(_¢ + 4)' [((v'c + r/w'c- r/vcO_-(wcOo)cOs4)

+ (r/v'_ + (w'_ + (v_O'o - r/w_0_))sin 4)] + (4)'¢_,T)' (3.29)

= v'¢ -- w_O'o -- 4)'[( cos 4) + r/sin 4)1 (3.30)

= w'_ + v_Oo + 4)'[r/cos4)- (sine] (3.31)

= v'c--(v'c--w_Oo)cOs¢--(w'_+v_O'o)sin4)+4)'¢,,T,_ (3.32)

cos ¢ + (v_wcO'o2 ' ' ' ' ' '= - v_w_) sin ¢ (3.33)-- VcvcOo -4- WcwcO o

= sin 4) (3.34)

w' --(w'¢ +V_Oo) cOs4)+(v'_--w_O'o)Sin4)+4)'¢uT, c (3.35)C#

(3.36)

(3.37)

and the curvatures are given by

,% (v;' w_Oo ''= - - 2w_Oo- vcO'o2)cos ¢ +

(w:'+ v_Oo'+ 2¢_0o- W_0o_)sin4)

" ' ' - wcO'J) 4)_ "= (w_' + vcOo + 2vflo cos -

(v:'- w_Oo' - 2w'cOo -V_0o2)sin 4)

(3.38)

(3.39)

where x, is the curvature in the flapwise plane and tcC is curvature in the lead-

lag plane. The strain component definitions simplify, after substitution of the

undeformed position vectors, to

e_ = (/_-h,_- 1)/2 (3.40)

e:_,7 = (/_,z"/_,n) (3.41)

e_ = (Rx-k_) (3.42)

%,7 _ Q_ _ c,_ _ 0 (3.43)
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where e,n and _,¢ are the engineering form of the shear strains. The three nonzero

strains are calculated by carrying out the dot products. These strains are shown

after application of the ordering scheme in terms of the displacements defined in

the cross-section system.

, 1 , woO,o)2 + l(w, ° + vcO,o)._ _ 'J'_, _ _,_¢ +=

l(r/2 _-2)¢,2 (¢'_/',,T)' (3.44)+ +

e_,7 vc, + (_'_,T,,7 -- _')¢' (3.45)

' + (¢_T,¢ + r/)¢' (3.46)£x_ = Wc,

These strains are defined in terms of the blade coordinate system through use of

the transformation [Tc,,] as

1 wa 1
e_ = u' +lva + _ +-_(rl2 +_2)¢a-v"[rlcos(Oo+¢)-_sin(Oo+¢)]

-w"[r_ sin(00 + ¢) + (cos(00 + ¢)] + (¢'¢,T)' (3.47)

e_,_ = v: cos(00 + ¢) + w: sin(00 + ¢) + (¢,,T,,7 -- _')¢' (3.48)

C_¢ = W: COS(00 + ¢)- V: sin(00 + ¢) + (_'_TZ + r/)¢' (3.49)

At this point a variable substitution is made which eliminates the kinematic contri-

bution of foreshortening from the axial displacement. It has been shown by Kaza

and Kvaternik [50] that this substitution provides the convenience of developing

centrifugal stiffening terms associated with foreshortening in the kinetic energy

formulation rather than in the strain energy formulation. The substitution is

' u' lva+ _w a (3.50)u_= +2

where u_ represents the elastic axial strain without kinematic contributions from

transverse bending displacements. The contributions of these displacements will

reappear in the formulation of kinetic energy when the variable substitution is

carried through into that derivation. The strain components then become in final
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_rm:

1

= u'_ +-_(TI 2 + _a)¢a +(¢'¢,,T)'--v"[_cos(Oo+¢)--(sin(Oo+¢)]

-w"[r/sin(Oo+ ¢) + ( cos(Oo+ ¢)]

,.. = v'.cos(Oo+ ¢) + w'osin(Co+ ¢) + (¢_r,. - ¢)¢'

e_¢ = w'.cos(Oo+ ¢) - v"sin(Oo+ ¢) + (¢_T,¢+ r/)¢'

(3.51)

(3.52)

(3.53)

The variation of the elastic strain energy is given by

io'ii.Y_)"= {a:.&.. + a.,&:. + a:(&._ } drld_dx (3.54)

and elastic stress-strain relationships employed in this formulation are given by

a=; = Q'15 Q_5 Q_6 e=¢ (3.55)

a=, Qi6 Q_6 Q_6 ex,

where the Q_j represent the material stiffness at a location in the cross section. The

material stiffnesses are an average value based on the individual ply material and

orientation, and also depend on the orientation of the laminate with respect to the

cross section axes. The stress-strain relations are substituted into the strain energy

variational, followed by a second substitution of the strain-displacement relations

(Eqns. 3.51-3.53) for the strains. After integrating over the area, the strain energy

variation becomes

]0R /0hdt] = _b_kij_j dx + _,Di dx (3.56)

where (i,j = 1,9), and the strain vector is defined as:

{ _'__' _" _' ao,,_ _, _, _, } (357)

The first integral of Eqn. 3.56 represents the linear part of the strain energy and the

second term represents the nonlinear contribution to the strain energy. The diag-

onal and nonzero off-diagonal terms of the symmetric linear cross section stiffness
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matrix are listed asfollows:

kll = EA (3.58)

k13 -- -EAccosOa (3.59)

kls = - EAcsin01 (3.60)

ka7 = EET + EA_00 (3.61)

k,s = EESccos01 - EES/sinO, (3.62)

k,9 = EES_sin01 + EF_LqlcosO, (3.63)

k_2 = 0 (3.64)

k33 = EI¢cos_Ox + EI /sin201 (3.65)

k3s = EI/cosOlsinO 1 - EIfcosOxsin01 (3.66)

k3T = /_r'Ccos01 - E/'Fsin01 (3.67)

k3s = (EFS_ + ECS/)cosOlsin01 (3.68)

k39 = EFScsin20, - EG'S/cos201 (3.69)

k44 = 0 (3.70)

k55 = Elfcos2Ol + EI_sin201 (3.71)

ksT = E/'Fcos0, + E/Usin01 (3.72)

kss = /_Slsin201 - EFS_cos_O, (3.73)

k59 = --(EFS_ + ECS!)cosO_ sin0x (3.74)

ke_ = 0 (3.75)

kr_ = GJ (3.76)

ks8 = GA_cos201 + GA/sin201 (3.77)

ks9 = (GAc - GA/)cosOlsinOa (3.78)

k99 = GAfcos2Ol+GAcsin201 (3.79)

with 01 -- 0o + ¢ and the cross section integrals given as follows: the classical cross
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section properties,

EA

EAc

EAr2

EIc

Ell

G3

= IrA Q'H dr/d_

= //A Q_lr/dr/d_

= //A Q'n (_2 + _2) d_ d¢

= Qnr/ dr/d_

ffA '= Qn_ d_ d_

ffa[Q'55( + Q_(¢,.T,. _)2_- _)uT,¢ 7./)2 + , --

+2Q_6¢,,T,¢ + r/)(¢,,r,,7 -- ¢)] dr/d_

(3.s0)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

the shear-related stiffnesses,

(3.86)

(3.87)

the anisotropic material coupling stiffnesses,

EEl" =//`4 Q'Is_,.T,¢ + r/) + Q'Is¢,,T,. -_)dr/d_

LTU = [Qls_,.T,: + _ ) + Q_6¢_,T,,7 -_)]r/ dr/ d_

ETF = [Q_5¢,,T,_ + _) + QlsV_,T,. - _)]_ dr/ d¢

(3.88)

(3.89)

(3.90)

the shear-related anisotropic material coupling stiffnesses,

EES_ = //`4 Q'_5 dr/d( (3.91)

EES f = /f.4 Q_6 dr/d( (3.92)

ECSI = //A Q'_6 r/ dr/ d( (3.93)

EFSc = f /, Q',5 ( dr/d¢ (3.94)

and because symmetry in geometry and Q_ is assumed about the chord line, the

following section properties become zero,

f/A Q'n _ dr/d_ = 0 (3.95)

/fAQ'x, r#: dr/d_ = 0 (3.96)
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Anisotropic material properties containing _"to the first power are not assumed

to be zerobecauseQ_5 and Q_6 may fluctuate greatly about the chord line. The

shear-related properties are separated in the above organization of cross section

properties because these parameters would not exist without considering shear

deformation. It is shown that these properties couple the classical beam deforma-

tions with the shear deformations when anisotropic material layups are considered

(Q_s and Q_6 not zero). Also, the anisotropic material stiffnesses couple the clas-

sical beam deformations within themselves when anisotropic material layups are

considered.

The possibility of material coupling of classical beam deformations with shear

deformations makes it necessary to included these degrees of freedom in an anisotropic,

rotating-beam, dynamic analysis. However, it may be possible to include the shear

deformation effects implicitly using static condensation. The argument for static

condensation of the linear stiffness matrix to eliminate the shear degrees of free-

dom is presented next. First, eliminate the second, fourth, and sixth rows and

columns of kij because the strain energy terms associated with N',M,', and &_ are

zero. The linear stiffness matrix kij can thus be reduced to a 6x6 coupled stiffness

matrix with diagonal stiffnesses corresponding to an axial stiffness, two bending

stiffnesses, a torsional stiffness, and two shear stiffnesses. For a static problem, the

force-displacement relationship may be written as:

I

Qx Ue

Qy U's

t

Qz Ws

= [kij] (3.97)

¢'

- M u w"

mz v"

where Q are forces in the directions indicated by subscripts and M are moments

about directions indicated by subscripts. Notice that the displacement vector has
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been temporarily rearrangedto clarify the force part of the relationship. This

relationship may be simplified for beam behavior by eliminating the shear-related

degrees of freedom. As was shown by Hodges et al. [63] it is proper to assume

the shear forces associated with the shear deformation are zero, but not the shear

strains because of the presence of coupling terms. With Qy and Q_ set to zero, the

shear deformations may be removed through static condensation. This amounts

to eliminating the rows and columns associated with shear from the compliance

matrix rather than from the stiffness matrix. The compliance matrix is formulated

by inverting the 6x6 cross-section stiffness matrix,

S_j= k/_1

and after elimination of the second and third rows and columns may be written as

t
_e Qx

¢' M_
= [S:j (3.98)

W It --/_ify

v"l i M_

The bending-related compliance terms include the flexibility associated with any

shear coupling present in the cross-section. The 4x4 compliance matrix is then

inverted to obtain the desired 4x4 form of the fully-coupled cross-section stiffness

matrix k_j, which implicitly includes shear deformation effects. The term kij is thus

replaced by k'ij in Eqn. 3.56, and the vector of continuous displacement variations

is reduced to

}66i= / &" &" &v" 6¢' (3.99)

This cross-section stiffness matrix is applicable to the dynamic problem assuming

the dynamic effects associated with shear deformation are small.

Now, it may be further shown that the static condensation operation on the

cross-section stiffness matrix serves only to reduce the effective stiffness properties
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of the diagonal terms. Furthermore, the operation is independent of the twist

angle 01 since it only involves the cross-section properties themselves. The reduced

stiffness matrix can thus be written as

k'l, = /_A (3.100)

k'12 = -/_A,cos01 (3.101)

k'13 = -ETA,sin01 (3.102)

k'14 = EEF + EAr20 o (3.103)

k_2 = /_Iccos201 + Elfsin201 (3.104)

k'23 = F_J.fcos01sin01 - F_Ifcos01sin01 (3.105)

k24 : /_r_'cos01 -- EFFsin01 (3.106)

k33 : EIlcos201 +/_lcsin201 (3.107)

k34 : ETFcos01 + E/U, sin01 (3.108)

k_4 = _J (3.109)

where the classical stiffness terms EA, EI I, EIc, and GJ have been statically con-

densed at 01 = 0 into the effective stiffness properties/_A, EII, EI_, and GJ. Notice

that the coupling stiffnesses related to anisotropic material properties, EET, ETC,

and ETF, are unaffected by the condensation. The structural-based coupling prop-

erties (those based on twist and neutral-axis offsets) are affected because of their

dependence on the classical beam stiffnesses. The important aspect of develop-

ing the cross-section stiffness matrix based on the effective stiffnesses is that it

is possible to obtain the effective stiffnesses and coupling stiffnesses directly from

sophisticated cross-section analyses. These analyses generally perform a static

condensation or some equivalent operation internally, providing stiffnesses based

on material compliance. These "effective" properties can then be adopted for the

twisted blade using Eqns. 3.100-3.109.

The nonlinear stiffness matrix from Eqn. 3.56 can also be written in terms of

95



theseeffectivebeamproperties, and is given as:

D1 = EETv" w'

D2 = 0

D3 = Gd¢'w' + EEFu'ew' + GJv"w '2 + 2ETCvt'w'cosO1 +

EFFw'w"cos01 - 2ETFv"w'sin01 + EIU w'w"sin01

D4 GJ¢'v" + _r_,l uev + GJv":w' + _.,,_,v cos01 +

ETFv" w" cosO1 ,,2 .- ETFv sin01 + ETCv"w"sinOa

Ds = ETFv"w'cos01 + EICv"w'sin01

D6 - -ErF¢'v" cos01 _r,p ,,2- - _.,_ v wpcos01 + ETC¢'w"cos01 +

EIU'v" w' w"cos01 - Wnllv"w " cos201 + F_,Icv"w"cos201 -

ETC ¢'v " sin01 + ff-,A,u', v"sin01 - ETCv'nw'sinO1 -

IEFF¢'w"sin01 r.-,,, ,, ,,,. ,, - ,,2- _lr v w w stay1 + EIiv cos01sin0a -

JEI It2cv cosOlsinOa - _.tw"2cosOlsin01 + Elcw"2cosOlsin01 +

_ lv"w"sin20x _ _cv"w"sin_01

Dr = GJv"w'

(3.110)

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

where i of the Di in this case correspond to the variational displacement vector

minus the shear degrees of freedom:

&i={ &', &'&"gw'f_w"_' } (3.118)

3.1.3 Kinetic Energy Derivation

The position of a point on the deformed blade as given by Eqn. 3.17 may be written

using the blade reference displacements and neglecting the warping displacements
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as

/_ = ({hx + x + u,v,w} + {o, 7/, {}[T_]) (3.119)

where [Td,,] is the transformation between the deformed and undeformed-blade

coordinate systems which is given by

[Td_] = [Tdc][Tc_] (3.120)

The velocity of a point on the deformed blade is written as

= 0--t-+ _ x/_ (3.121)

where

= {flx, flu, flz} = {O,O, flo}[T,.,]T[Tr,,] T j,, (3.122)

and Q0 is the rotation rate at which the hub spins about the inertial zi axis. If

there is no precone then fix = fl_ = 0. After application of the ordering scheme,

the velocity is given by

P = {v_,v_,v,} L (3.123)

k_

V_ = _ + wfi, - vfiz - (f}z + ,)')'7 cos0, + (fi_ - tb')¢ cos0, + 'Tf_, sin 01

+ftz; sin01 + ; cos 01v'$ + r/sin 01v'$ - '7 cos 01w'q_ - ¢ sin 01w'¢

+'7 sin 01tb' + i sin 01,/ (3.124)

v_ = ,_- w_ + (h_+ z + ,_)fi,- _'7_,'cosO,- _¢ cos01- i_cosO, -

fl_(w' cos 01 - f't.'7 sin 01 - '7¢ sin 01 - fi_'Tw' sin 01 + f_(v' sin 01(3.125)

v_ = t_,+ vfi_ - (h_ + z + u)_ + _'7cos01 + _'Tv'cos 01 + _,_cos 01 +

Ft_,(v' cos 01 + flu'Tw' sin 01 - (¢ sin 01 - fi_( sin 01 - flu(v' sin 01 (3.126)
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where 01 = 0o + ft. After taking the variation of the velocity, the following substi-

tutions, which are based on Eqn. 3.50, are made into 1_ and _IY.

6 = 6o - (¢6' + w'(v') d_ (3.127)

La, = _o - (v's/- _'ao') d_ (3.12s1

The variation of the blade kinetic energy is given by

,r =/ooff, pV. (3.129)

where p is the mass density of the blade. After substituting the velocity as defined

in Eqn. 3.123 into the kinetic energy expression, calculating the velocity variation,

and carrying out the dot product, the variation of the kinetic energy may be written

as

foRm{[T,,]i_i + [T6]i_i + +TF} dx (3.130)

where (i = 1,6) and the vector of displacement variations for the kinetic energy

formulation is given by,

gfii= { &c & &' &v _tv' _¢ } (3.131)

The quantities [Tu]i and [T_]j represent groups of terms which may be functions

of both u and ft. TF represents additional terms in the kinetic energy which result

from the integral part of the variation substitution for &_, and after application

of the ordering scheme may be written as:

/0 /oTF = --(z + 2_) (v'&' + w'&v')d_ + 2& (v'C + w'tb')d_ (3.132)

The contribution of TF to the kinetic energy is then given by flo mTF& which after

the appropriate substitutions gives

_oRmTFdx = folm[-(x + 26) foX(V'_V' + w'_w')d_ +

2& (v%' + w'@')d_ldr (3.133)
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Integration by parts yields a more convenient form for the foreshortening contri-

bution to kinetic energy as

fo R m TFdx

where

= -(FA + +

£+2& (v'//+ w'tb') d_ (3.134)

j(x RFA = mx d_ (3.135)

Fcor= 2mi, d_ (3.136)

The terms associated with FA reflect the centrifugal stiffening effects on the flap

and lag equations while the terms associated with Fcor reflect the nonlinear Coriolis

damping effects in those equations. The terms associated with FA and Fcor are

added to Tv_ and T%, which allows the linear contribution to the kinetic energy

variation to be written as

5T,,, = {_,rn,j_j + 5hicijfij + 5fi, kijfij) dx (3.137)

A more useful form of the above expression is obtained by integrating the varia-

tion in kinetic energy by parts over time. This can be done because in applying

Hamilton's principle the variation in kinetic energy will be integrated in time. By

temporarily switching the order of integration, the integration by parts can be

performed.

Jr2 _01 _1 jftt2_tirnijztjdx dt = _irnijujdt dx =
1 1

1 2__ , _uirrliJi_jdt) dx= __i_lairrliji_idxdt (3.138)

After a similar operation on the damping term of Eqn. 3.137, the linear variation

of kinetic energy becomes

fo" "5T.,_ = _5_-ti{rnij_tj + cijuj + kijztj} dx (3.139)
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with the vector of displacement variations for the kinetic energy formulation given

by

_fii= { gut & &' hv by' _¢} (3.140)

mij is the mass matrix which includes rotational inertias, c0 is the linear damping

matrix, and k 0 is the linear stiffness matrix which contains the centrifugal stiffening

terms of nonlinear origin.

3.2 Implementation

The linear parts of the strain and kinetic energies defined in Eqns. 3.56 and 3.139

were used to develop a p-version beam finite element so that the degree of poly-

nomial approximation for the bending, torsion, and axial displacements may be

independently selected. Integrations over the element length were performed sym-

bohcally to increase computational efficiency of the analysis. The final form of the

rotating blade equations after application of Hamilton's principle in discretized

form is given by

Mijiilj + CO_Ij + Koq j = 0 (3.141)

where MO, CO, and K 0 are the element mass, damping, and stiffness matrices,

respectively, qj represents the vector of discrete displacements. The elements

are assembled to form a global system which is solved using standard eigenvalue

techniques to obtain modes and frequencies. Further description of the beam

element formulation is provided in this section.

The present formulation is implemented as a beam finite element. Many past

analyses for rotating blades have used this approach, but the order of polynomials

used to approximate the displacements has varied. The analysis of Kosmatka [55]

uses a quadratic torsion and axial approximation along with cubic Hermitian poly-

nomials for bending. This set of assumptions provides the same level of accuracy
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in the torsion andaxial deformationsas in the bendingdeformations. The analyses

of Hong and Chopra [65,66]and Smith and Chopra [68] usesimilar displacement

polynomials, but with a cubic axial approximation, developedas a mean for im-

proving the axial modepredictions.

A higher-orderelementcapability was developedfor the dynamic analysisof

beamsin the GRASP code(Hodgeset. al. [81]). In this code the user could inde-

pendently increase the order of polynomial approximation of each displacement to

match the physical characteristics of the beam. This is the so-called p-version finite

element approach, and seems ideally suited for application to analysis of elastically-

coupled beams because of the dramatic influence elastic couplings have on beam

flexibility in some displacement modes. The study of Hinnant [82] demonstrated

that, given proper modeling of the beam geometry, there is also substantial savings

to be gained by use of p-version elements in terms of total number of degrees of

freedom required to obtain an accurate solution.

3.2.1 Finite Element Discretization

The linear parts of the strain and kinetic energies as defined in Eqns. 3.56 and 3.139

are used to develop a p-version beam finite element. The continuous displacements

which appear in these expressions are u, v, w, and ¢, and are functions of both x

and time. The continuous problem is discretized by introducing discrete degrees

of freedom q_ which are related to the continuous displacements according to

V

W

¢

P_

__N_'q'_ (3.142)
i----1

P.

__N_q'_ (3.143)
i=1

P_

Y_ NTq'[ (3.144/
i=l

P,

_-'_N_q_ (3.1451
i----1
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where Ni are shape functions defined later in this section. Substitution of these

equations into Eqns. 3.56 and 3.139 gives the strain and kinetic energies in terms of

the discrete degrees of freedom. The virtual energy expression defined in Eqn. 3.1

may also be written in discretized form as

6II = [j,, (_SU, - 6Ti) dt (3.146)

where N is the number of spatial elements used to discretize the elastic blade.

Each element is represented using the discrete displacements as

_SU-_iT= 6qT {MiSIj + Cij/B + Kijqs} (3.147)

where the element mass, damping, and stiffness matrices are defined by

Mij = BikmktBij dx

Cij - Bikc_tBi.7 dx

(3.148)

(3.149)

(3.150)fo RK 0 = (Aikkk_Atj dx - BikkklBtj) dx

where Bik = B_ and Aik = A T. B is a matrix of shape functions and shape

function derivatives which satisfies the relationship

u, = ( DT )ij [fij] = (DT)q[Hjkqk] = Bikqk (3.151)

where fij is a vector of the continuous degrees of freedom u, v, w, and ¢. DT

is a matrix of derivative operators associated with the kinetic energy formulation

and H is a matrix of shape functions whose arrangement depends on the selection

of discrete variables in q, and satisfies Eqns. 3.142-3.145. The definition of Aij is

similar to that of Bij except that it is associated with the strain energy formulation.

Thus, B may be replaced by A and subscripts of T may be replaced by V in

Eqn. 3.151.

The discrete degrees of freedom are divided into two sets, external and internal.

There are twelve external degrees of freedom which have physical significance as the
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displacementsand rotations associatedwith the endsof the beam finite element

(six on each end). These deformations are depicted in Figure 3.3. The shape

functions for N/" and N ¢ are identical and have C°-type continuity. There are two

well-known linear polynomials used to define this set:

N ° = 1 - x (3.152)
l

NO = _x (3.153/
l

where N_ = N_ = N °. The shape functions N_ and N_ require C 1-type continuity.

These shape functions are given by:

X 3 X 2

N_ = 2]- 5-- 3_- + 1 (3.154)

X 3 X 2

N_ - l: 2 T + x (3.155)

X 3 X 2

N3a = -2-_- + aft- (3.156)

X 3 X 2

Naa- 12 l (3.157)

where N_ = N/_ = N_.

The internal degrees of freedom have no physical significance, but are simply

coefficients of the higher-order shape functions. The internal degrees of freedom

serve to increase the accuracy of the transformation from the discrete problem

having a finite number of degrees of freedom to the continuous problem having an

infinite number of degrees of freedom. In the present formulation, the number of

internal degrees of freedom is limited to four for the C°-type displacements, and

to two for the Cl-type displacements. There are, therefore, a total of six internal

shape functions associated with each continuous displacement u, v, w, and ¢. The

additional C°-type shape functions for u and ¢ are

N° = 45( x:
12 l) (3.158)

X 3 X 2 X

N° = v (-2 T + 3 17- 7 ) (3.159)
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X 4 X 3 X 2 X

gs ° = v_ (5-_- - 10-_- + 6-_- i ) (3.160)

X 4 X 3 X 2 X

g ° = -42_ + 105_ - 90_ + 30_- - 37 (3.161)

These shape functions are derived by Hinnant [82] based on satisfaction of two

requirements: first, the higher order shape functions must be zero at the element

boundaries, and second, they must be orthogonal with respect to their first deriva-

tive. The additional Cl-type shape functions for v and w are given by

X 4 X 3 X 2

N_ = x/5(2/4 13 + _-ff) (3.162)

X 4 X 3 X 2

N_ = v/_(--_s 5 + 5_-g - 275- + 9_-_) (3.163)

The derivation of these higher-order polynomials is similar to that of the C o_

type polynomials, only the functions must also have zero slope at the element

boundaries, and must be orthogonal in their second derivative.

The arrangement of shape functions in the matrix of shape functions H depends

on the arrangement of discrete degrees of freedom in q. To facilitate the element

assembly process, the discrete unknowns were grouped with the first twelve external

nodes together, followed by the twelve internal nodes (4u, 2v, 2w, and 4¢). The

arrangement of the vector of discrete degrees of freedom is given as

a T ! l l i{ _,, vl w, ¢1 -w, v, u2 _ w_ ¢2 -w2 v2

_3u4 us_6v_4w3 w_ ¢3 ¢4 ¢5¢6 } (3.164)

Before the symbolic integrations of Eqns. 3.148-3.150 can be carried out, the

mass, damping, and stiffness cross-section matrices (m, c, k, and k) must be defined

as polynomials in x. The cross-section terms are functions of x because of the pres-

ence of the twist angle in many of the terms, which is itself a function of x. In the

present formulation, it is desired to have the capability of accounting for changes

in cross-section properties beyond that due to twist, such as taper, for example.
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A beam elementdoesnot allow for such effects directly, so a quadratic polyno-

mial curve fit was adapted to increase the accuracy of the element for changes in

cross-section properties along its length.

The mass, damping, and stiffness matrices as given by Eqns. 3.148-3.150 were

symbolically integrated to obtain 24 x 24 element matrices. These matrices were

implemented in an analysis to determine the modes and frequencies of highly-

twisted elastically-coupled rotor blades. As part of this implementation, the dis-

placement approximations could be chosen for each continuous displacement inde-

pendently. The external displacements represent the minimum number of degrees

of freedom for each element, while the maximum is given by use of all twelve

internal degrees of freedom. Any choice between 12 and 24 degrees of freedom

per element could be accomodated in the analysis. The notation adopted for the

present formulation is to select a "p" value which represents the number of inter-

nal degrees of freedom associated with a particular displacement. For example, an

element with p_ = 1 and pc = 1 uses the basic cubic hermitian polynomial ap-

proximation in bending (no internal degrees of freedom) and quadratic polynomial

approximations in the axial and torsion displacements. This particular example

happens to represent the most common approximation used in finite element rotor

blade dynamic analysis because it gives an equivalent level of approximation in all

displacement modes.

3.3 Analysis Application

The capabilities and limitations of the present analysis with respect to mode and

frequency predictions of highly-twisted elastically-coupled beams are examined.

The present analysis, referred to as CORBA (COmposite Rotating Beam Analysis)

for clarity, is first verified for simple cases where the elastic coupling influences

are small. The predictions of CORBA are then examined for cases where the
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elastic coupling effects become significant. Convergence of the CORBA results

was achieved using five beam elements with cubic polynomials for the bending

displacements, and quadratic polynomials for the axial and torsion displacements.

These approximations gave convergence in the most highly twisted rotating beams

considered in this study, and were more than adequate for the untwisted cases.

3.3.1 Analysis Verification

Several cases were studied to verify CORBA predictions of modes and frequencies

for rotating composite blades. Three of the case studies are presented in this pa-

per. These three configurations, referred to as Series I, were developed by Smith

and Chopra [68] to investigate the effects of elastically coupled rotor blades for

a soft-inplane hingeless rotor helicopter. The blade cross-section was designed to

be representative of an actual rotor system with respect to stiffness and inertial

properties. The main structural member of the rotor blade was a single cell com-

posite box beam. The ply orientation of the box beam laminates was adjusted

to produce the three configurations considered here. The first case is uncoupled

(baseline), the second is extension-flap shear, flap bending-twist coupled (symmet-

ric case), and the third is bending-shear, extension-twist coupled (anti-symmetric

case). The terms "symmetric" and "anti-symmetric" refer to the orientation of

laminates with respect to the bending axes of the box beam, but not to the lami-

nates themselves. The individual laminates themselves are arranged in a symmetric

configuration for all cases. The stiffness properties associated with each case, as

reported by Smith and Chopra [68], are shown in Table 3.1. In this table, EA is

the axial stiffness, GAu and GAz are the lag and flap shear stiffnesses, GJ is the

torsional stiffness, and EI u and EIz are the flap and lag bending stiffnesses, k12

represents the extension-flap shear coupling, k13 the extension-lag shear coupling,

ka4 the extension-twist coupling, k_5 the lag shear-flap bending coupling, k36 the
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flap shear-lagbending coupling, k4sthe flap bending-twist coupling, and finally

k,_ the lag bending-twist coupling. All the stiffnessesareshownto be nondimen-

sionalizedby appropriate factors of m0 the mass per unit length, f_ the reference

rotational velocity, and R the blade radius.

The rotating natural frequencies for each case as predicted by two analyses,

UMARC and CORBA, are shown in Tables 3.2-3.4. All references to "UMARC"

are understood to mean the version which has a 19 degree-of-freedom shear de-

formable beam element, unless otherwise indicated. The difference in predictions

between CORBA and UMARC is shown to be less than one percent for all modes

except the second flap mode of the anti-symmetric case where the difference is

1.35 percent. Comparison studies, not shown here, also showed good agreement

between the two analyses for highly twisted blades, up to 90 ° . These correlations

indicate that the present analysis has accurately captured the effects of rotation,

twist, elastic coupling, and shear deformation.

Two more case studies, designated Series 2, were examined to determine the

influence of higher amounts of elastic coupling on the frequency predictions of

UMARC and CORBA. The cross-section geometry of these cases was a simple

single cell box beam, without any nonstructural mass or secondary structure, and

in one case the layup was arranged in an anti-symmetric configuration while the

other was arranged in a symmetric configuration. The symmetric case had a [1516

layup of graphite epoxy material on the top and bottom walls while the sides had

a layup of [15/-1513. The anti-symmetric layup was [1516 on top and [-1516 on the

bottom wall, and one side was [1516 while the other side was [-1516. The box had an

outside width of .953 inches and outside depth of .537 inches, and the specimens

were 33.25 inches long. These cases were examined because a set of experimental

results, presented by Chandra and Chopra [77], was available for correlation with

the analytical predictions.
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The cross-section mass and stiffness properties of these specimens were calcu-

lated using a two-dimensional analysis described in detail by Smith and Chopra [83].

This analysis accounts for shear deformation and the out-of-plane warping associ-

ated with torsion, but does not consider any other warping effects. The mass and

stiffness properties developed by this analysis were used as input to both UMARC

and CORBA.

The analytical and experimental results are listed in Table 3.5 for the anti-

symmetric case and in Table 3.6 for the symmetric case. The importance of in-

cluding the shear coupling effects for the anti-symmetric case is demonstrated by

the overly stiff predictions shown for UMARC* (UMARC version without shear

deformation). The frequency predictions of CORBA are shown to agree very well

with those of UMARC in both cases. There is a small discrepancy in the pre-

dictions of the second lag modes, but this amounts to less than 4 percent. Of

greater importance is the discrepancy of both beam analyses with respect to the

experimental results. The correlation of CORBA with the experimental results is

shown to be poor, particularly in the lag mode, for both the symmetric and anti-

symmetric cases. The error is mostly likely caused by neglecting some important

warping terms in the cross-section analysis.

3.3.2 Warping Influences on the Anti-Symmetric Beam

The cross-section analysis employed in the verification studies of the last section

considered only the out-of-plane torsion-related warping. Account of this warping

effect gave a much more flexible and accurate torsional stiffness value. Analogously,

the shear stiffness of the beam is also decreased by warping of the cross-section.

In this case, the majority of the effect is due to deformation of the cross-section

associated with shear forces both inplane (anticlastic deformation) and out-of-

plane. A simplified approach for including shear-related warping effects in a beam
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is to reduce the effective shear stiffness by a factor K which represents the ratio of

average shear stress over the cross-section to the shear stress at the centroid. This

factor accounts for the near-parabolic distribution of shear stress through the cross

section in the direction of the applied shear force, and is generally referred to as

Timoshenko's shear correction factor. Since the amount of warping due to a shear

load depends on the shape and material of the cross-section, so does the value of

K. The value of K was determined, using the formulas derived by Cowper [84], as

approximately 0.85 for the anti-symmetric box beam.

The influence of the shear stiffness effect on bending behavior was examined

for the Series 2 anti-symmetric box beam, but with variations of the laminate ply

angles. The basic ply structure of the anti-symmetric box beam is [0]6 on top and

one side, and [-0]6 on bottom and the other side, where 0 = 15 ° for the baseline

anti-symmetric configuration. The ply angle was varied from 0 = 0 ° to 0 = 45 °

for this study. The beam was considered non-rotating so as to isolate the elastic

effects from the rotational effects.

For this study, the results of CORBA were compared with those of an anisotropic

3-D p-version finite element analysis developed by Hinnant [78]. The 3-D analy-

sis used four brick elements to model the box beam. Convergence was achieved

with ninth order polynomials for displacements along the length of the beam, cu-

bic polynomials along the sides of the cross-section walls, and linear polynomials

through the thickness of each laminate. The material properties of each brick fi-

nite element were determined by averaging the material properties for each ply in

the laminate over the laminate thickness. For cases in which the box beam was

twisted, each brick element was twisted in a continuous manner such that the finite

element model did not differ from the physical model by more than one hundredth

of an inch at any point.

Results of the ply angle sweep for the anti-symmetric box beam, both with and
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without the shearcorrection factor applied, are illustrated in Figure 3.4, shown

as a function of error in the CORBA analysiswith respect to the 3-D analysis.

The error in the first bending modesis shownto increaserapidly with ply angle,

maximizing at about 0 = 25 °, and then decrease with ply angle. This is consistent

with what might be expected based on the Poisson effects because the Poisson's

ratio of the box beam laminates follows a similar trend with ply angle. The cross-

section warping is dependent on the Poisson's ratio, so errors associated with

not including all the effects of warping are expected. The worst error is quite

significant, about 16 percent in the first lag mode and about 6 percent in the first

flap mode. The error in the second and third bending modes is shown to be higher,

with error maximizing at about 0 = 20 °. The shear correction factor is shown to

greatly reduce these errors, giving a very accurate prediction in the flap modes.

In a second approach taken to account for all warping influences, the lag bend-

ing stiffness was determined through iteration (using the CORBA analysis) as that

required to drive the first lag bending frequency to zero error. The error of the

second and third lag bending modes associated with the new lag stiffness are il-

lustrated in Figure 3.5. As shown, the error in the higher lag bending modes is

reduced, with less than five percent error at 0 = 30 ° where previously the error was

in the 10 to 25 percent range. This is an important result because it shows that

even in cases where the warping effects are significant, the frequencies of higher

modes may be accurately predicted if the same is true of the fundamental modes.

The result is not obvious because the importance of direct shear effects increases

at higher modes (beam is effectively shorter). The rotating box beam with [1516

layup was then considered with the appropriate stiffness terms as developed in the

nonrotating study. The results are shown in Table 3.7 to be greatly improved over

those of Table 3.5, indicating that effects associated with rotation have a negligible

influence on the accuracy of the frequency predictions.
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3.3.3 Warping Influences on the Symmetric Beam

The symmetric box beam case was also examined as a function of ply angle in

the nonrotating configuration. For the symmetric box beam case, the shear is

uncoupled from bending and should have little effect on the bending frequencies.

The plots of Figure 3.6 show that there is a dependency of the error (calculated

with respect to the 3-D analysis results) on the ply orientation, just as there was

for the anti-symmetric case. The error in the prediction of the fundamental torsion

mode (which is coupled to the flap bending mode) is shown to increase with ply

angle to a maximum at 0 = 45 °, while the error in the lag mode (which is decoupled

from torsion and flap) maximizes at about 25 ° . The error in the higher lag and

flap modes does not follow the same path as the error in the fundamental lag mode

with respect to the ply angle variations. The higher modes are shown to improve

while the fundamental lag mode worsens for the ply angles above 30 ° .

A new torsional stiffness was determined which gave a zero error in the funda-

mental torsion mode. The procedure used was the same iterative procedure used

previously to obtain the improved lag stiffnesses for the anti-symmetric case. It

was found that the improvement to the torsional stiffness drove not only the fun-

damental torsion mode error to zero, but also drove the flap bending mode error

to near zero because of the coupling between the two modes. The reverse was

found not to be true, driving the flap bending mode to zero error did not cor-

rect the torsion mode error. Since both the fundamental torsion and flap bending

modes could be corrected by adjusting a single stiffness value, the errors associated

with the flap bending and torsion modes were likely from the same source, which

was probably an alteration of the torsion-related warping function at the high ply

angles.

An improved lag stiffness was also calculated using the iterative procedure.

The error of the lag bending mode is attributed to out-of-plane warping associated
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with bendingsincethis mode is decoupledfrom all other modes.

Application of the refined torsion and lag bending stiffnessesimprovedpredic-

tions of the higher bendingmodesasshownin Figure 3.7. It is interesting that the

error in the higher modes,after the correctionswereapplied, are lowerat high ply

angleswhere the beamis highly coupledand are worseat zerodegreesply angle

where the beamis uncoupled.

3.3.4 Influence of Large Pretwist on Nonclassical Effects

Another important influence on composite blades is that of the built-in pretwist.

The influence of pretwist could create problems for the approach of the present

formulation because it is difficult to account for a global effect like pretwist in

the local cross-section analysis. The study of Shield [85] illustrated the significant

influence of pretwist on cross-section deformations of bars, and the study of Kos-

matka [86] showed that pretwist has a significant influence on the cross-section

deformations and extension-torsion behavior of solid and thin-wall airfoil sections.

The static behavior of pretwisted elastically-coupled composite beams was stud-

ied by Iesan [53], Kosmatka and Dong [56], and Kosmatka [57]. These studies

indicate that the elastic-coupling and nonclassical influences of shear-deformation

and warping can be influenced by the pretwist of the beam. There are no known

reports to date, however, indicating the magnitude of the effect that the pretwist

may have on the dynamic behavior of elastically-coupled beams typical of rotor

blades.

The influence of the pretwist on the nonclassical effects of shear deformation

and warping were examined for the nonrotating symmetric and anti-symmetric

box beam cases of Series 2 with 8 = 15 °. The error of the CORBA predictions as

compared with the 3-D results are shown in Figure 3.8 for pretwist angles up to

90 ° in the anti-symmetric case. The change in error is small for the fundamental
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modes,with error changelessthan five percent from the untwisted case,even in

the extreme caseof 90° of pretwist. The error in the higher lag modesis shown

to be only slightly larger, with a changein the error from 9 to about 16 percent

in the third lag mode. The changein error of both the fundamental and higher

modes,asa function of pretwist, wasnegligible for the symmetric case.

3.3.5 Convergence Study

A convergence study was performed to determine if use of higher order elements is

beneficial when beams are elastically coupled. A standard h-element is defined for

purposes of the present discussion as one with cubic bending shape functions and

quadratic axial and torsion displacement approximations. The equivalent p-version

element of the present formulation has pu = 1 and p_ = 1. Since this element is

routinely used in rotor analyses, the convergence study will consider it a baseline

for comparison. Elements with higher order than the standard are referenced by

their addition to the displacement approximations. For example, "Std.+lw+lt"

refers to a beam element with one order higher approximation in flap bending and

torsion than the standard element.

A convergence study of a bending-twist-coupled untwisted composite box beam

showed slow convergence of the third predominantly flap mode. The cause of

this was probably due to the coupling between the bending and torsion modes.

Various shape function approximation schemes were employed to determine an

optimum for convergence of this particular mode. The results are illustrated in

the plot of Figure 3.9 which shows that the "Std.+lw+lt" approximation scheme

had the best convergence. Use of that approximation scheme decreased the total

number of degrees of freedom from 32 to 22, assuming a 1 percent error criteria.

This amounts to about a one-third reduction in global degrees of freedom which

could relate to significant improvements in run times associated with analyses of
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elastically-coupledblades.

The compositebox beam consideredin the abovestudy was uniform and un-

twisted. A secondstudy wasconductedon the samebeam with 40° of pretwist.

In this case,the cross-sectionpropertieschangeas a function of x, and, as a re-

sult, the integrations were not exact. Again, various shape function approximation

schemes were employed to determine an optimum for convergence of the third flap-

wise bending mode. The results are illustrated in the plot of Figure 3.10 which

shows that there is no optimum. The convergence rates are also much shallower

than those shown for the untwisted case in Figure 3.9. This is because in addition

to the elastic coupling between flap and torsion modes, the pretwist introduces

coupling between the bending modes. The only higher-order element which per-

formed well had additonal order increases in both bending modes as well as torsion.

However, for this twisted case, the higher order elements did nothing to improve

efficiency, and in some cases even degraded it.

3.4 Summary

A dynamic analysis has been formulated for rotating pretwisted composite blades

which exhibit anisotropic behavior. The present formulation incorporated the ef-

fects of shear deformation implicitly through elimination of the shear variables in

the material compliance matrix. Results showed that this approach was able to

capture the most significant effect of shear deformation, namely the reduction in

effective bending stiffness that occurs when a substantial amount of bending-shear

coupling is present in a beam. The difference between implicit and explicit use of

shear degrees of freedom was shown to be less than 2 percent up to the second

bending modes of some representative rotor blades, and less than 4 percent up to

the second bending modes of some highly coupled box beam specimens.

The results of this study also showed that one-dimensional global dynamic anal-
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ysis basedon classicalbeam kinematics can accurately predict the bending and

torsion frequenciesof modesimportant to an aeroelasticanalysis. However,the

sectionpropertiesusedin the global analysismust accountfor the important non-

classicaleffectsassociatedwith sheardeformation, warping, and elastic couplings.

Thesenonclassicaleffectswereshownto have significant influenceon the frequen-

ciesof the fundamental modesof highly coupled beam structures. Errors on the

order of fifteen percent werereducedto lessthan five percent through account of

the nonclassicaleffects.The influenceof twist on the predictive capabilitiesof the

analysiswasshownto be small.

The presentanalysis(CORBA) wasimplementedusinga p-versionbeamfinite

element. Both the advantagesand disadvantagesof this approachwere discussed.

The p-versionelementprovedto be convenientfor assuringa convergedsolution,

and allowed the desired flexibility in tailoring the displacementapproximations

to the dynamic characteristicsof a given beam configuration. Somedegreeof

efficiencyimprovementwasdemonstratedfor the uniform untwisted case,but ef-

ficiency doesnot appear to be an issuefor more realistic rotor blade structures.

Much of the efficiencyof using higher order elementswasshown to be lost for a

highly twisted blade.
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Table 3.1: Composite blade stiffnesses for Series I.

Stiffness Baseline Sym. Anti-Sym.

EA/mogt2R 2 378.1 378.1 378.1

GA_/mof_2R 2 50.77 50.43 50.77

GAz/mof_2R 2 25.85 25.85 25.85

GJ/mof_2R 4 .003822 .003815 .003796

EI_/mof_2R 4 .008345 .008345 .008345

EIz/moft:R 4 .023198 .023198 .023198

kl_/mof_2R 2 0 -33.67 0

kl3/mo_2R 2 0 0 0

kl4/mof_ R z 0 0 .3589

k2s/mof_ _R 3 0 0 -. 1794

k36/mof_2 R 3 0 0 .1796

k4s/mof_2R 4 0 -.001311 0

k,_ / m o f__R 4 0 0 0
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Table 3.2: Frequencies for the Series I baseline.

CORBA UMARC Diff. Pred.

(per rev) (per rev) (%) Mode

0.749 0.747 0.23 1st lag

1.147 1.146 0.09 1st flap

3.398 3.389 0.26 2nd flap

4.338 4.315 0.53 2nd lag

4.590 4.590 0.01 1st tor.

7.459 7.416 0.58 3rd flap

13.61 13.60 0.08 2nd tor.

Table 3.3: Frequencies for the Series I symmetric case.

CORBA UMARC Diff. Pred.

(per rev) (per rev) % Mode

0.749 0.747 0.23 1st lag

1.143 1.142 0.11 1st flap

3.354 3.346 0.25 2nd flap

4.338 4.314 0.55 2nd lag

4.590 4.590 0.01 1st tor.

13.63 13.62 0.08 2nd tor.
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Table 3.4: Frequenciesfor the Series 1 anti-symmetric case.

CORBA UMARC Diff. Pred.

(per rev) (per rev) % Mode

0.736 0.735 0.08 1st lag

1.142 1.141 0.07 1st flap

3.344 3.389 1.35 2nd flap

4.256 4.244 0.29 2nd lag

4.367 4.367 0.01 1st tor.

Table 3.5: Rotating frequencies of the Series 2 anti-symmetric case at f_ =

1002 RPM.

CORBA UMARC UMARC" Experiment CORBA} UMARC't Pred.

(Hz) (Hz) (Hz) (Hz) Diff. (%) Diff. (%) Mode

36.53 36.49 43.52 33.6 8.70 29.5 1st flap

53.89 53.73 62.57 46.6 15.65 34.3 1st lag

202.8 202.2 247.8 184.0 10.2 34.7 2nd flap

336.4 328.2 383.6 2nd lag

493.6 493.7 493.7 1st tor.

t Correlation with experimental results. " UMARC without shear deformation.
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Table 3.6: Rotating frequenciesof the Series 2 symmetric case at f_ = 1002 RPM.

CORBA UMARC Exp. CORBAt Pred.

(Hz) (Hz) (Hz) Diff. (%) Mode

36.92 36.87 35.20 4.88 1st flap

62.79 62.45 53.80 16.7 1st lag

205.0 203.0 188.0 9.04 2nd flap

392.2 378.9 2nd lag

729.9 729.2 1st tot.

t Correlation with experimental results.

Table 3.7: Rotating frequencies of an anti-symmetric layup box beam at f_ =

1002 RPM with refined stiffness properties.

CORBA Experiment CORBA Pred.

(nz) (Hz) Error (%) Mode

34.78 33.60 3.50 1st flap

47.04 46.60 0.93 1st lag

190.4 184.0 3.46 2nd flap

293.4 2nd lag

493.6 1st tor.
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Figure 3.1: Geometry of the shaft and hub.
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Figure 3.2: Geometry of the elastic blade.

121



K
C

V t

2
^ T ¢J2I

^ _ "w2 _2

w 1

t

Figure 3.3: Beam element showing external discrete degrees of freedom.
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Figure 3.6: Error in frequency predictions as a function of ply angle for the sym-

metric box beam.

125



15

10

Error,

%

5

0

3rd Lag

,J
,, 3rd Flap

I i

0 15 30

qw

45

Ply Angle, deg.
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Chapter 4

Structural Modeling of a

Tiltrotor with Anisotropic Blades

The tiltrotor configuration requires several substantial modifications to the heli-

copter structural modeling which exists in UMARC. The modifications are neces-

sary because of the large angle of attack of the pylon and requirements for addi-

tional hub-related degrees of freedom which do not currently exist in UMARC. It

also has been determined that important terms for tiltrotor dyanmics, which are

associated with rotor precone, do not appear in the current UMARC formulations.

These terms will be included in the present derivations. The required changes are

extensive enough that it is necessary to derive the new structural equations from

basic principles. The derivation of the tiltrotor structural model, however, does

follow the general guidelines of the derivation of the helicopter structural model

used in UMARC. The significant similarities and differences between the helicopter

and tiltrotor derivations are discussed throughout this chapter.

In the first part of this chapter, the tiltrotor modeling assumptions and frames

of reference are introduced. Important considerations for a gimballed rotor system

are included in this section. An energy formulation based on Hamilton's principle

(used in UMARC formulations) is applied to the present model, resulting in sys-
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temsof equationsassociatedwith the strain and kinetic energies.The formulation

for elastic strain energyshowsthe differencesrelated to preconebetweenthe past

and presentformulations. A new definition for blade foreshorteningis defined as

a result, and this definition is extendedinto the derivation of kinetic energy. The

final linear mass,damping,and stiffnessterms of the systemare then defined.

4.1 The Tiltrotor Model

The fuselage motion is not considered in the present formulation. There are a

number of tiltrotor wind tunnel tests based on cantilevered wing models to validate

the theory before additional complexities associated with fuselage motion are added

to the system. The tiltrotor is modeled as an elastic wing cantilevered to a fixed

support. At the wing tip, a single rotor system is mounted to a rigid pylon which

can rotate between airplane and hover modes as illustrated in Fig. 4.1. The rotor

system consists of an arbitrary number of elastic blades, Nb. The wing and each

blade are assumed to be elastic beams undergoing flap bending, lag bending, elastic

twist, and axial deflections. The rotor pylon, though itself considered rigid, may

pivot about the wing elastic axis, and may be set at any arbitrary angle with

respect to the wing. In this dissertation, the pylon angle is 0 ° when the pylon

points straight up (helicopter mode) and is 90 ° when the pylon points straight

forward (airplane mode). The more common tiltrotor terminology in use today is

just the opposite, 90 ° when the pylon points straight up (helicopter mode) and 0 °

when the pylon points straight forward (airplane mode). The different definition

is used for the present derivation to be consistent with the equations of motion

already established in the general purpose rotorcraft code known as UMARC. The

pylon angle is closely related to the shaft angle of that code which is defined with

0 ° pointing straight up.

The types of rotor systems which can be accommodated in UMARC are the
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bearingless, hingeless, and articulated rotor systems. Tiltrotors often use a gimbal

rotor system which is considered in the present formulation.

4.2 Frames of Reference

The coordinate systems and transformations associated with the frames of refer-

ence used in the formulation of the tiltrotor structural model are defined in this

section. For the present formulation, an inertial frame of reference is placed on the

tiltrotor wing-tip on the wing before deformation as illustrated in Fig. 4.2. Note

that the origin of this frame is at the pylon pivot point (point about which the

pylon angle is defined) which is assumed to be close to or on the wing elastic axis

at the wing tip.

The wing itself is flexible so a deformed-wing frame of reference is required to

describe motion at the wing-tip. This motion is similar to the hub motion of a

conventional helicopter if the pylon height is set to zero. Because of this similarity,

the degrees of freedom associated with the transformation from the undeformed

to the deformed wing reference frames are termed hub degrees of freedom. Five of

the six hub degrees of freedom represented in the present formulation are analgous

to the five original UMARC fuselage degrees of freedom. The original UMARC

fuselage degrees of freedom for a helicopter configuration are given by x I (transla-

tion positive aft), Yl (translation positive starboard), z! (translation positive up),

a, (shaft pitch angle positive nose-down), and ¢, (roll angle positive starboard)

while the new hub degrees of freedom are given by Xh (translation positive aft),

Yh (translation positive starboard), zh (translation positive up), ah (pitch angle

positive wing leading edge down), Ch (roll angle positive for top of pylon moving

starboard), and _h (yaw angle positive for wing leading edge port). Note that

these definitions are based on the starboard tiltrotor wing and rotor system. The

inertial and deformed wing reference frames are illustrated in Figure 4.2.
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The hub referenceframe is offset from the deformedwing frame by the pylon

height and isoriented in the samedirection whenthe pylon angleis set to zero. The

pylon angle ap is assumed to be a large steady angle, and its effect on orientation

of the hub frame is illustrated in Figure 4.3. While the hub frame remains fixed,

a rotating blade frame rotates with the blade about the hub frame as illustrated

in Fig. 4.4, and in the absense of precone or gimbal angle the vector/_ runs along

the undeformed blade span.

A unique feature of tiltrotors is the common use of a gimbal rotor system. A

gimbal rotor system acts like a ball joint at the center of rotation; the lead-lag

behavior is similar to a hingeless rotor system and the flap behavior is similar to

an articulated rotor system hinged at the center of rotation. It is convenient to

visualize a gimbal reference frame as a fixed frame defined with the same origin

as the hub frame, but oriented at angles fGC and fiGS with respect to the hub

frame as illustrated in Fig. 4.5. However, the gimbal flapping motion does not

alter the swash-plate angle so the pitch angle of the rotating blade outboard of the

pitch bearing remains unchanged by the gimbal flapping (ignoring any pitch-flap

coupling for the time being). The fixed frame gimbal does not then provide a

"proper" transformation for the physics of the system. The proper transformation

is then to consider the gimbal flapping in the rotating system as a single degree

of freedom fG which always transforms into two fixed-system degrees of freedom

regardless of the number of blades. The transformation is given by

fc = fcc cos e +/3GS sin (4.a)

and because the gimbal angle is a function of time

_a = _ac cos _b +/3cs sin _b + flasfl cos _b - flGcf't sin _b (4.2)

The fixed system degrees of freedom associated with the gimbal are considered part

of the hub set of degrees of freedom as a matter of convenience which gives a total
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of eight hub terms. The gimbal may be lockedout when articulated, hingeless,or

bearinglessrotor systems(which do not feature this motion) are modeled.

Followingthe aboveexplanation, the next transformation in the sequenceafter

the rotating-blade system is the undeformedblade system. From the rotating

bladesystema transformation is definedto the undeformedbladesystemthrough

an anglepreviously definedin Chapter 3 asthe preconeangle. To accountfor the

possibility of a gimbal rotor system,this transformation now includes the gimbal

angle as defined in the rotating system. What was/_p now becomes/_p + Bc as

shown in Fig. 4.6.

The remaining two required reference frames, the cross-section reference frame

and the deformed reference frame, were defined as part of the formulation of strain

and kinetic energy in Chapter 3. The inertial reference frame of that formulation is

essentially replaced by the sequence of reference systems from the present inertial

system to the hub reference frame, and then the precone transformation is modified

to include the gimbal angle.

The sequence of seven coordinate systems from the inertial to the deformed

system is as follows (a notation of identification for each system is given in paren-

thesis): inertial (i), deformed-wing (w), hub (h), rotating (r), undeformed-blade

(u), cross-section (c), and deformed-blade (d). The unit vector triads of each co-

ordinate system are related to the triads of the previous coordinate system in the

sequence through the following transformations:

Z =

ko R,,

(4.3)

(4.4)
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j_ --[T_r] Jr (4.5)

& kr

= [Trh] Jh (4.6)

k_ kh

L = IT,d J_ (4.7)

The six transformation matrices required for the full sequence are defined as fol-

lows:

[T_c]

-(w" + vco'o)cos¢

+ (v'_- wc0_)sin ¢

I I I I

v c-w_O o w_+vcO o

0o sin ¢ sin ¢

+ cos ¢

0ocos ¢ cos ¢

- sin ¢

(4.9)

[T_]

1 0 0

0 cosOo sinOo

0 -sinOo cosOo

(4.1o)
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IT.,]

cos _p9

0

sin/_vg

COS ¢

- sin ¢

0

0 -sint3p_

1 0

0 cos

sin _, 0

cos¢ 0

0 1

(4.11)

(4.12)

[Thai

IT.d

cosap 0 -sinap

0 1 0

sin% 0 cosap

cos Ch sin _bh 0

--sin_bh COS_,h 0

0 0 1

1 0 0

0 cosCa --sinCh

0 sinCh cosCh

COSah 0 --sinah

0 1 0

sinap 0 cosah

(4.13)

(4.14)

The transformation Talc was derived previously in Chapter 3. The transformation

T_ accounts for pitch angle of the cross-section with respect to the plane of rota-

tion. The pitch angle 00 is a combination of blade collective, cyclic, and pretwist,

and is not assumed to be a small angle. T_r accounts for the blade precone and

gimbal angles, both of which are assumed to be of order e and positive in the flap-

up direction. As will be seen later in the derivation, fla is a function of time while

tip is not. Trh accounts for the blade rotation angle ¢ = fit defined as a positive

rotation about the /(, vector and is not a small angle. The transformation Th,_

accounts for the steady pylon angle setting (at 0 ° the rotor points up for helicopter

mode, at 90 ° the rotor points forward for airplane mode) which is not assumed to

be a small angle. The final transformation accounts for deformation rotations of
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the wing at the wing-tip, ah, Ch, and (h. These three angles are of order e.

Because all the coordinate systems are orthogonal, the above transformation

matrices may be inverted by taking the transpose, producing the following rela-

tionships for the inverse transforms

[Ted] = [Tat] -a = [T,tc]T (4.15)

[Tuc] = [T_,] -1 = [Tcu]T (4.16)

[T,,] = [T,r]-' = [T,,r] T (4.17)

[The] = [T,,]-' = [T.hlT (4.18)

[T_hl = [Thai-' = [T_]T (4.19)

[T_] = [T_,]-' = ITs,,] T (4.20)

The transformation from one frame to any other is accomplished by multiplying

through the applicable part of the transformation sequence. For example, the

transformation from the hub to the cross-section reference system is given by

Jh = [The] j_ = [Th,I[T,._,I[T,,¢] j_ (4.21)

k'h k'o f¢

and the transformation from the cross-section blade reference frame back to the

hub frame is given by

= [Tch] = [T.I[T_I[T_] .],,

kc kh k_

= [T_lr[rru]r[rh_] r Jh (4.22)

/?h

The transformations discussed above are used throughout the remaining sections

to define displacements and velocities in the various reference frames.
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4.3 Nondimensionalization and Ordering Scheme

The present formulation is developed in nondimensional form consistant with that

used in UMARC. The physical quantities are nondimensionalized by reference

parameters associated with the rotor system as follows:

Length R (4.23)

Time fl-1 (4.24)

Mass/Length m0 (4.25)

Velocity fir (4.26)

Acceleration fl2R (4.27)

Force m0f_2R 2 (4.28)

Moment m0f_2R "_ (4.29)

Energy or Work m0f_2R 3 (4.30)

The reference parameter m0 is defined as the distributed mass of a uniform blade

which has the same flap inertia as the blade under consideration (which may be

nonuniform). This parameter is given by

3I_ 3 foR mr2dr

m0- R3 - R3 (4.31)

The present formulation is explicit and nonlinear. In this type of formulation,

the number of terms can quickly become unmanagable. In general, an ordering

scheme is adopted to reduce the number of nonlinear terms retained in the formu-

lation. It identifies those terms which have little or no impact on the system under

the geometric assumptions adopted. Terms of order e'_+2 are ignored when terms

up to e" exist in the same energy expression, and _ is a quantity equivalent to the

maximum bending rotation expected in the beam model. The ordering scheme

used in the tiltrotor formulation is slightly different from that used in previous
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formulations associated with UMARC. As elastic coupling in rotor blades can re-

sult in large elastic twist, the present ordering scheme considers elastic twist to

be of order 1 rather than of order e as it has in past formulations. The order of

important nondimensional quantities associated with the tiltrotor formulation are

listed as follows:

0(1)
xhm 0 0

#' R' R' mo' &b' Ox'

cos¢, sin_,, cos01 , sin01 , cosa v , sinav,

0o, 01, ¢

O(e) - v ,1,R ' -R' &' 3ac , 3cs
kh flh &
R' R' R '_h'¢"'_h'ah'&'4"'

fir ed eA e 9

R' R' R' R

Ue

O(?) -
R

(4.32)

(4.33)

(4.34)

4.4 Formulation Using Hamilton's Principle

The tiltrotor formulation is based on Hamilton's variational principle generalized

for a nonconservative system which may be expressed as

6II = £_('5U - ,ST- ,sW)dt = 0 (4.35)

'SU is the variation of the elastic strain energy, ,ST is the variation of kinetic energy,

and ,SW is the work done by nonconservative forces which are of aerodynamic origin

in the present system. The contributions to these energy expressions from the rotor

blades, hub, and wing may be summed as

'SU = ( _ aUb) + aUh + ,SU,,, (4.36)
\m=l

_T _. (_ _Tb_ ._ _Th -_ _T_,] (4.37)

\===1/
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_SW = \,',=1(_ _SWb) + 'SWh + 6W_" (4.38)

where b refers to the blade, h to the hub, and w to the wing. The work is performed

by the aeordynamic loads on the rotor blades which is considered later in Chapter 5.

There is no contribution of the structural model to work, only the elastic strain

(potential) energy and the kinetic energy (and associated mass, damping, and

stiffness matrices) are derived in the present chapter. The elastic strain energy is

the result of rotor blade and wing deformations. The elastic strain energy of the

rotor blade with the hub fixed was derived in Chapter 3, but some modifications for

the hub motion and rotor precone must be considered for these results to be valid.

The wing structural model is the same as the rotor blade with f_ = 0 so there is no

need for a new formulation of elastic or kinetic energy for the wing contribution.

The kinetic energy of the rotor system, which was derived in Chapter 3 for a

fixed hub, is invalid for hub motion, and is thus reformulated with the hub motion

included in the present chapter.

4.4.1 Formulation of Elastic Strain Energy

Blade Elastic Strain Energy

On the surface, it would not seem necessary to reconsider the elastic strain energy

of the rotor blade as defined in Chapter 3 for the tiltrotor configuration. This

is because the orientation of the rotor in space should not influence the elastic

deformation which is defined relative to the undeformed blade. If the important

influence of precone had been included properly in this formulation then this would

indeed be the case. The present definition for nonlinear strain includes rigid body

motion as was seen in the previous development of Chapter 3. There, a fore-

shortening strain variable, UF, was defined so that the centrifugal stiffening effect

associated with the kinematic contribution to rotor foreshortening was removed
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from the strain energy formulation, and through the same variable substitution,

reappeared in the kinetic energy formulation. Unfortunately, that formulation (like

past UMARC formulations) does not account for the additional rigid body motions

associated with precone. The orientation of the blade with respect to the hub plane

influences the centrifugal force on the blade which, in the application of Hamil-

ton's principle, appears first in the strain energy. The present section redefines the

foreshortening substitution to include the precone influence and thereby improves

the formulation by accounting for centrifugal-elastic coupling effects arising from

the precone.

The fundamental kinematic variables from Chapter 3 were defined in the unde-

formed-blade coordinate system as u, v, and w. The undeformed-blade coordinate

system may be preconed at an angle fly with respect to the rotating blade coor-

dinate system as shown in Figure 4.6. Three new kinematic variables are defined

in this system as u,, v,, and w_. The relationship between these new kinematic

variables and the kinematic variables of the undeformed-blade coordinate system

are given by the transformation T_,, as

u, = u cos/3 v - w sin/3p (4.39)

vr = v (4.40)

wr = wcos/3 v + usin_p (4.41)

Since/3_, is a small angle and u is an order of magnitude smaller than w, these

relationships may be simplified to

Now, w may be defined as:

u_ = u- wflp (4.42)

v_ = v (4.43)

w, = w (4.44)

w = we + v¢ (4.45)
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where w, is the elastic flapwise deformation and v¢ is the rigid body motion in

the flap direction due to the combination of lag and twist deformation. The axial

displacement for the precone-modified formulation is then written as

ur = u -/3p(w_ + re) (4.46)

It is apparent then that the only significant influence of the precone is the shorten-

ing of the axial kinematic variable by the term flp(w¢ +v¢). Since this term modifies

the blade extension, it will modify the blade stiffness via centrifugal forces, similar

to the foreshortening discussed in Chapter 3.

Substitution of the new definition for axial displacement (Eqn. 4.46) into the

position vector defined by Eqn. 3.17, taking derivatives defined by Eqns. 3.23-3.28,

and substitution of these results into the strain definitions given by Eqns. 3.40-3.42

yields the precone-modified strains as:

It t

1

(r/2 + ¢-2)¢a + (¢'¢_T)' -- v"[r/cos(00 + ¢) -- ¢ sin(00 + ¢)]

--w"[r/sin(00 + ¢) + _"cos(00 + ¢)] (4.47)

e_, = v'_ cos(00 + ¢) + w: sin(00 + ¢)+ (_)uT, v -- ;)¢t (4.48)

e,¢ = w: cos(00 + ¢) - v:sin(00 + ¢) + (_3uT,¢ ']- rl)¢t (4.49)

where the kinematic variables are now defined in the rotating-blade coordinate

system although the subscript r has been dropped.

Recall from Chapter 3 that the kinematic foreshortening of the rotor blade is

removed from the potential energy formulation through the following substitution

tit t 1
1

= u, - v a - 2 wa (4.50)

and this was necessary to account for the rigid body displacements included in

the definition of u. u is now modified to include the rigid body displacement
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associatedwith the precone.The rigid-body motion contribution is then added to

the definition of axial strain so that Eqn. 4.50becomes

It then follows that

u'= 'Ue-- 2

(4.51)

&'_ - v'&'- w'&v' - _p(¢&' + v'_ + v_¢' + ¢'&) (4.52)

1/o /ou_ - -_ (v a + wa)d_ - _, (v'¢ + v¢')d_ (4.53)

[f (v'&'+ -

/3p (¢&' + v'&b + v_' + ¢'&)d_ (4.54)

With these new definitions for the axial strain, the strain energy becomes

1 ¢-2)¢,2-- u'_ + _pw' + _ (r]z + + (¢'¢.T)' -- v"[r] cos(0o + ¢) -- _ sin(0o + ¢)1

(4.55)

(4.56)

(4.57)

-w"[r/sin(0o + ¢) + _ sin(0o + ¢)1

e_,7 = v: cos(0o + ¢) + w: sin(0o + ¢) + (¢_,T,, -- _)6'

e_¢ = w: cos(0o + ¢)- v:sin(0o + ¢)+ (_uT,¢ 3u T])¢'

where, again, the kinematic variables are now defined in the rotating-blade co-

ordinate system although the subscript r has been dropped. The linear stiffness

matrix terms defined by Eqns. 3.58-3.79 in Chapter 3 are now modified to

kal = EA (4.58)

k13 = -EA,TcosO, (4.59)

k,5 = -EA,sinOa (4.60)

k_7 = EET + EA_20_) (4.61)

kxs = EES_cos0a - EESlsinOx (4.62)

k19 = EES_sin01 + EESIcos01 (4.63)

k22 = EA/3p (4.64)
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k33 = E/ccos20l +E If sin201 (4.65)

k3s = EI.tcosOasinOl - EI !cosO, sinOx (4.66)

k3_ = /!SrU'cos01 -/_TFsin01 (4.67)

k:_ = (EFSc + ECSf)cosOlsin01 (4.68)

k39 = EFScsin201 - ECS.tcos201 (4.69)

k44 = 0 (4.70)

k55 = E/fcos20a + Elcsin201 (4.71)

ks7 = ETFcos01 + E/_sin0, (4.72)

kss = ECSfsin20, - EFSccos20, (4.73)

k59 = - (EFS_ + ECS l)cos01 sin01 (4.74)

k66 = 0 (4.75)

k_T = GJ (4.76)

kss = GAccos20a + GAfsin:01 (4.77)

ks9 = (Gac - Gaf )cosO, sinOx (4.78)

k99 = GAfcos_01 + GA_sin201 (4.79)

with 01 = 00 + ¢. The i,j of the stiffness matrix correspond the vector of displace-

ment and displacement variation, respectively, where the displacement variation

vector is given by

{ gu: 5v' 5v" 5w' 5w" _ 6;b' _: &v: } (4.80)6hi

These terms agree with those developed in Chapter 3 except for the k22 stiff-

ness. An investigation of this particular term showed a negligible influence on

flap stiffness of typical rotor blades because the centrifugal-related flap stiffness is

dominant. However, care must be exercised in the selection of an axial stiffness

which is reasonable since an unreasonably large value may create an influence when

precone is present in the system (an infinite axial stiffness will result in an infinite
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flap stiffness). The stiffnessmatrix is still applicable to static condensation,as

explained in Chapter 3, only there is an additional diagonal term which expands

the matrix size to a 5 x 5. The reducedstiffnessmatrix is now given by

k'11 = E?A (4.81)

k'12 = -/_Ancos0a (4.82)

k'aa = -/_Ansin0_ (4.83)

-- !k',4 = EEr + EA 200 (4.84)

k_2 = /_Iccos20x + 12Ilsin201 (4.85)

k_3 = _ lcosOxsinOx - F_,IlcosOlsinO 1 (4.86)

k_4 = E/'Ccos0a - E/'Fsin01 (4.87)

k_3 = EI.tcos20, +/_Icsin20, (4.88)

k_4 = ETFcos01 + E/U'sin01 (4.89)

k_4 = GJ (4.90)

k'ss = EA/3p (4.91)

and the corresponding vector of displacement variation is

_i={ &'_ &" &o" &b'h,'} (4.92)

Hub Elastic Strain Energy

The strain energy contribution of the hub is given entirely by the gimbal system

when hub springs are included. This is a very simple formulation given by

1 2
Uh = 1K_Gc_3gc + -_ KOas_GS (4.93)

and the variation of the strain energy is then

6Uh = Ka_Gc63Gc + K_o_cs_Gs (4.94)
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Theother hub degrees of freedom do not have any direct elastic strain contribution.

The strain energy associated with these motions come from the wing structure so

elastic stiffness does not exist until the hub is assembled to the wing model. The

assembly process will be discussed later in this chapter.

4.4.2 Formulation of Kinetic Energy

To reformulate the kinetic energy of the system with hub motion included, the

contributions of hub motion to the total velocity must be considered. In this

section, the velocity components in the three principle inertial frame directions are

derived. There are two contributions to these velocities considered in the present

derivation: the blade motion and the hub motion. As mentioned previously, the

fuselage motion contribution is not considered, and is not required for development

of a cantilevered wing tiltrotor model. The general expression of the velocity vector

for the motion of the blade and hub together can be written relative to any frame

of reference as

IY = _ + l_h (4.95)

where l_b represents the blade contribution and Vh represents the hub contribution

to the total velocity.

The contribution of the blade and hub velocities is determined by taking the

time derivative of the position vector in the inertial frame. This approach elimi-

nates the need to determine the time rate of change of a local rotating reference

frame with respect to an inertial frame since the local frame in this case is the

inertial frame. The position vector of an arbitrary point on the cross section of

the deformed blade is given by:

= {xh]_,yhJi, zh[i,} + hh'_ + {(x + u)]u, vJ_,wh'_} + {O,'lJd, dQ} (4.96)
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which may be written entirely in the inertial reference frame as

({xh,yh,z. }+ {0,0,h}[T_,]+ {(_+ ,,),v, w}[T,.,]

+{O,.,_}[Td,]) 3, (4.97)

The blade and hub degrees of freedom are functions of time as is the azimuth angle

¢ which may be written as fit. The precone angle tip is assumed to be constant.

After carrying out the transformations and applying the ordering scheme, the

velocity due to blade and hub motions is then defined by

+ ¢'h- - yd, + y_J,+ vzf¢,
Ot

(4.98)

with V_, V_, and V, provided as follows (note separation between terms provided

to help delineate between 0(1), O(e), and O(e 2) contributions to each velocity)

V_ = -cosap sin_b x -

COSOtp C05¢ COSO 1 _ -- 6hCOSOtp h - coso_p cos_ v - cOSOp sine _ -

sinap _b - &hCOS¢ sinap x -- flGCCOS¢ sinap x -- flasCOS_' sinap x +

ahsinap sin¢ x + flecsinap sin¢ x -- flassina v sin_/, x + Xh --

cos_b X_h -- sin_b XZ'h + cosap cos¢ sinOa (_ +

aacos¢ cos01 r/sinap + ahdahsinap + 6acos01 r/sinap sine -

&hCOSap r/sin01 + fl_cosap r/sin_b sin01 + 2flacCOSap cos¢ 7?sin¢ sin01 -

flasCOSap cos¢ r/sin¢ sin01 - cos01 r/sinap 01 + cosap r/sine sin01 _1 -

cosa v sin¢ u + cosap cos_b _ + ahCOS¢ sinap v +

&hsinap sin_b v + ahsinap sine 75-- cosap cos¢ cos01 r/b' -- &hCOSap w +
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flpcosap sine w + 2_Gccosap cosg, sine w - _GsCOSap cos_/, sin_b w -

ahcosap fo -- flpcosap cos_b tb - _ascosap cos¢ sin_b _b -

cosap cos¢ r/sin01 tb' - &hflpcosav x - ahd_hcosap cos¢ x --

ah_GCCOSap cos_b x - othflasCOSOtp cos_ x + ahflGccosap sin_b x -

&h/3cscosap sine x - ah3GSCOSap sine x + 13GCt3pCOSap cos¢ sin_/, x --

/_as/3pcosap cos¢ sine x + cosO1 r/sine (h + sin_ vfh -- cos_b _3(h --

COS¢ Cos01 rfi:h -- COS¢ VL'h + hsinap (hZ,h -- &h/3CcCOSOp COS¢ x --

cosa !, cos_/, x(h_h + COS%, COS01 r/sine v' + cosaj, r/sine sin01 w' --

_GCcosap cos2¢r/sin01 --/3GSCOSap cos2_/,r/sin81 --

3Gccosap cos2_'w -- _SGscosap cos2g, w + 13Gscosap sin2¢w --

cos ¢ -

flacflasCOSap cosaCx + fl_ccosap cos2¢sin¢ x -

flgsCOSap cos2¢sin_b x - flac_ascosap cos2¢simb x -

Bas_ascosap cos¢ sin2¢x - flaccosap cos2¢tb +

fiasCos%, rl sin2_sin81 - _ac/_asCos%, cos2¢sin¢ x +

_acl3asCOSap cos¢ sin2¢x - 6hcosap cosO1 ( + fll, cosap cosOl sin_ ( +

2/3GCcosap cos¢ cosO 1 sin_, ( -- 3GSCOSap Cos¢ cosO_ sin_b ( -

ahcos¢ sinap sinOa ( - &hsinap sing, sin01 ( +

cos%, cosO_ sin_b t_l( + sina v sinOa 0_( +

cosoq, cos¢ sinOa i,'( - cosa_ cos¢ cosO_ tb'( -

sine sinOx ((h + cos_ sinOx ((h -- cosa_ sing' sinO_ (v' +

cosa_, cosO_ sine (w' --/_GCcosa_ cos2_bcosO_ ( -

_3ascosa v cos2¢cosOa ( + flascosa_ cosO1 sin2¢( (4.99)
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Vv = cos¢ z +

cosav he - cosOx r/sin_ - sin_, v + cos_, 6 + cos¢ ,_sinap x -

Csinczv sine x + Yh -- cosav sine XCh -- hsinav Zh + cosav cos_ Xkh +

sine sin01 ¢"--

cost cos01 r/Csin%, - &hhCsinav -- ahhCsinap --

cosO_ r/¢sinap sin_b - Bpcos_b r/sin01 + cosav r/¢sinO_ -

Daccosg' r/sine sinOa - 2flcsCOS_b r/sine sin01 - cos_, r/sin01/)1 +

cos¢ u + sin_b ti - cos_b ¢sin%, v - Csinap sin_b v -

¢sinav sine/, - cosO1 r/sin_b//- flvcos_, w +

cos%, Cw - ¢}cccos¢ sine w - 2flcsCos_ sin_ w + cosav Czb -

_psin_ d, - _cccos_/, sin_ tb - r/sin_/, sinO1 tb' +

,_hCOS% cos¢ Cz + 3cccosap cos_, Cz + _ascosap cos¢ Ox +

+  os¢ +   ocos, . cos¢ -

_ac/_vcos _ sin¢ x - tScsflvcos¢ sine x - ahcosav Csin_., x --

/3cccoso 6, Csin_ x + _csCOSOq, ¢sin¢ x +/_csCOSO% Csin_, x --

¢$sin_ x +/_vclSessin¢ 3x- _vs_essin¢ 3x-

cosa v cos¢ cos/gx r/¢h -- COSa v COS¢ V_h -- cosav sin¢ 6_h --

sinav zb_h --//vccos_b sina v X_h -- 3escos¢ sinoq, X_h +

flvcsina v sine X_h -- 3cssina v sine XCh -- cosav cosS1 r/sin_ Zh --

r/sina v sin01 Zh -- cosav sine V/_h -- sinav WZ'h --

flvsina v X_'h -- flaCCOSg' sinav x_h - fl_ssinav sine X]:h --

sin_, X_hZ, h -- COS_3 COSO 1 _'0" -- COS_) r/sinO1 w' -
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_'GCcos2¢r/sin01+ _acr/sin2¢sin01 - _asr] sin2¢sinOx -

/3cc cos2¢w +/3ac, sin21/,w - _as sin2¢w -

flas sin2¢ _b - _aC_GC cos2_bsin¢ x -

flasj3p sin2¢z - _ac_as cos_¢sin¢ x +

/3ac/3p sin2_/,:r +/3_ccostb sin2¢x-/3acj3csCOS!/, sin2_x -

/3_sCOS¢ sin2¢x- _ac_ascos¢ sin2¢x-

/3pcos¢ cosOa ( + cosap cosO_ ¢_" -/_accos¢ cosO_ sine ( -

2/3asCOS¢ cosOa sin!/, ( + cos_, Csinap sinOx ( + Csinap sine sinOl ( -

cos¢ cos01 t_l( + sshsinO1 6'( - cthsin¢ tb'( +

cosap cos_b sin01 ((h -- cos01 sinap (_h + cosav sin_b sin01 (_h +

cos_, sinO1 (v' - cshcos01 (w' -flac cos2¢cosO1 ( +

/3accosO, sin2¢( - _asCos01 sin2_/,_ (4.100)

V_ = sinapsin_bx

+/:h + COS_/,COS01 r/sina v + j3asCOS%, cos¢ x + cos_ sinap v +

cosap tb + &hcosap cos¢ :r - q_hsin_ x -- 13accosa v sin_/, x -- cos_ Chx --

(ahCOSa,, COS¢COS0177)-- COS¢COS01rich --

&hCOS%, cos01 r/sine + cos01 r/¢hsin¢ + _hr/sinap sin01 -

/3prlsin%, sine sinOa + cos%, cosO1 r//_l - r/sina_ sine sin01 01 +

sina_ sine u - cos¢ sinai, _ - cos_b Chv -- ahCOS%, cos_/, v --

&hCOSa_ sine v + Chsing' v -- cos¢ psi_ -- OthCOSO_ sine f_ +

sin%, sine 6 -- cos01 rtsina_ sine v' + cos¢ cosO_ rlsin%, +' +
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&hsinc_pw -/3psinap sin_ w + C_hsin_p _b +/3pcos_b sinap tb +

cos_b r/sinc_ v sin01 tb' + &h_psin_p x + C_h&hCOS¢ sinc_p x +

COS_ ChChSinap X -- OhCOSCrv sine x + &hCOS_p Xh --

_hYh -- O_hCOS¢ X_h -- COSO_p COS¢ _hX_h --

&hsin_b X_h + COSO_p Chsin_ X_h -- COSC_p cos_b ChX_h --

Crhsin_ X_h + _hsin_p Zh -- _CCCOSC_p COS_ COS01 rI --

flaSCOSOp cos01 r/sinV -- flaccosc_p cosV v -- flcscosap sinV v

+flcsCOSCrp cosV b --/3cccosap sine b -- _acsinop tb +

-&hflcccos¢ sinop x - _hflCsCOS¢ sincrp x -- _hflGssinc_p sinV x +

ah_ccsinc_ v sine x -- &hCOS01 sinav ff + flvcos01 sinc_p sing, _ +

_hcosc_p cos_b sin01 ff + fl_ccosc_p cos_b sin01 _ + cos_ Chsin0_ _ -4-

COS¢ sinap sin01 _ + d_hcosc_p sin_b sin0_ ff +/_sCOS_v sin_ sin0x ff --

dhsinV sin01 ff + cos01 sinewy sinV 0_¢" -- cos_v sin0_/_lff --

sinc_v sine sin0_ v'_ + cos_ sinc_v sin0x _3'_ + cos01 sinc_p sine w'¢" -

cos¢ cos0_ sinc_p tb'_ - r/sinc_ sin_ sin01 w' (4.101)

The variation of velocity is calculated from the above equations and placed in form

similar to Eqn. 4.98 as

(4.102)

Variation of Kinetic Energy

The kinetic energy for the blade and hub system is given by

1

T= ffa.. (4.103)

where V is the velocity as defined by Eqn. 4.98 and p_ is the mass density of any

arbitrary point in the system. In the present formulation, the mass density of the
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hub is zerobecausethe massof the pylon and rotor hub is considered part of the

wing. The variation of the kinetic energy is given by

ZT/ ,ST= p,V . ,SP drl d( dz (4.104)

Integration over the cross section area results in the following definitions for the

mass constants of the blade:

m = ffAP, drld(

inca = IrA p'rl drl d(

(4.105)

(4.106)

(4.107)

(4.108)

(4.109)

mk2ml = //A ps(2 drl d(

mk_2 = ff, ,.,2do d(

mkL = ffa +

where m represents the blade mass per unit length, % is the mass center of gravity

offset from the elastic axis which is positive forward, k,,l and kin2 are the flapwise

and chordwise mass radii of gyration, respectively, and k,,, is the torsional mass ra-

dius of gyration so that mk_ represents the torsional mass moment of inertia about

the elastic axis. Because a symmetrical airfoil is assumed about the chordline, the

following integrations are zero:

ffa.,¢d¢ = o (4.110)

ffap,@d,Td( = 0 (4.111)

The nondimensional form of the kinetic energy, after the cross section integra-

tions are carried out on the velocity dot product, is written as

aT
fo R m(TF + T,,bu_ + T_,_it_ + T,_bv + T+,Si_ + T,_6w + T+b(v +

mofl2R 3

T_¢ + T_¢ + T+_v'+ TJ¢+ T=,_w'+ T+,_w'+

Tj:h _JCh "4- Tfth _ih "4- T_h _Zh q- Toth _ah -t- Tdh 6dth "4-

T_oc,_ac + T_oc_ac + T_os_vs + Tbos,5_as) dx (4.112)
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where,_TF is the contribution associated with the foreshortening effect. The kinetic

energy associated with this effect was derived in Chapter 3, but before proceeding

with the kinetic energy formulation with hub included, the kinetic energy associ-

ated with TF as modified for the precone is derived.

Kinetic Energy Associated with Foreshortening

The new form for the axial strain with precone included is given by Eqn. 4.51. The

foreshortening contribution can then be written as

, 1 a
u F = lv'2 + _w + _p(v'¢ + v¢') (4.113)

sinceu': _-u_ u_. Substitution of this definition into the expressions for velocity

and velocity variation give the foreshortening contribution as

TF = -(x + 2_))_V -4-UF_V (4.114)

and the terms associated with uv are given by

_F = ff(v%'+w'_')d_+

Z__0_(¢&'+ v'_¢+ ,_¢' + ¢%)d_

@ = ff(v'6'+ w'w')d_ +

_ ]0_(_'¢+ ¢¢ + _¢' + .¢')d_

(4.115)

(4.116)

The contribution to the kinetic energy is then given by f_ mTrdr which, after the

appropriate substitutions and application of the ordering scheme, gives

_o_m[-(_ + 26)]0x(¢&' + _'_')d_ -

/0_& (¢_' + v'_¢+ _¢' + ¢'_)d_ +

2_ ff(¢¢ + _'w') d_]_ (4.117)

As was the case in Chapter 3, integration by parts yields the convenient form for

the foreshortening contribution. For the present case, the kinetic energy associated
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with foreshorteningbecomes

lmTFdx = -(FA + Fco,)(v'&' + w'6w')-/3pFA(¢&' + ¢'&)l) DCt dl-

+2&/_(v'i_' + w'gv') d_ (4.118)
.tO

where

f lF.,t = mx d_ (4.119)

LFco_ = 2rob d_ (4.120)

Comparing results with Chapter 3, the modifications to the formulation for precone

are seen to add centrifugal stiffness contributions only and do not add contributions

to the nonlinear Coriolis damping (within the ordering scheme).

Terms in the Kinetic Energy

Let [T,,]i represent the groups of terms which are the coefficients of 6fii and [T_]i

represent the groups of terms which are the coefficients of 6ui where

and

{6u_ 6v 5w 5¢ 6v' 5w'

6Xh _Yh 6Zh 60th ¢_¢h ¢_h 5_GC 5_GS}

6fi =

(4.121)

d

(_ui = _-_t_i (4.122)

Equation 4.112 can then be expressed more compactly as

6T
foRm([T_,],6fi, + [T_,],,Su, + Tf) dz

mo_2R 3

Through integration by parts, the following relationship is developed

R A R

which may be used to further simplify Eqn. 4.123 to

6T
+ Tr) dx

mof_2 R 3 .t0

(4.123)

(4.124)

(4.125)
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where
d

[T_,], = [T_,], - -_[T_,], (4.126)

so that the [T_]i include the additional acceleration terms gained by the integration

by parts. The values for the [T_]i are derived as

T,, = &hCOS¢ h - cose, %¢(_ - cos% h(_hsing' -

2%¢sin01 -/i + 2t) + x + 2¢hsin% x -

cos% cosg' Xh -- sine Yh -- COS¢ sin% Z.h + 2COS% X_h +

hsin% sinV _h (4.127)

Tv = cos0,%- cos ,,cos¢h ;h+ cos0, +

cos01%¢(_ - 5hhsin¢ - %¢sin01 +

%¢sin01 + cos01%¢til + %sin0_ til - 26 +

v -/i + ehsin% x -- phihsin % x + cos% sing, xh --

cosg' _)h + sin% sine ;:'h + COS% X_h + Cosg' hsin% _h --

cos% x_h (4.128)

T,,, = -cos0a %(_ + %¢2sin01 + %¢q]sin01 -

cosO, egO, + %¢sinO, _J, - g, -/3px + ahcosg' x -

5hCOS_• + _cccos¢ z -- _cccos¢ x -- 2/_oscos_ z +

2cos% cos¢ (_hZ + 25hsin¢ X + 2_ccsin_b x +

/3vssing' x --/3Gssing' x -- cos% ChSin¢ X + COS% (_hsing' X +

sin%, k_h -- cosop ,_h + sin% sin_ X_h -- 2cos!/, sin_p X_h --

sin% sing, X_h (4.129)

-- -- _2 "°T, - -cos:01k_2¢ cos201k_2¢+ cos0x k_lsin01 -

cos01 k_sin0_ + cos0x k_2¢2sin01 + k_2¢sin20a-

k_2q] sin201 - cos201k_201 - k_2 sin20101 -

/_GcCOSg' COS01 eaX -- _GSCOsO1 easing, x + %¢¢sin01 x (4.130)
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cos2Olk_ff_ + 3cos01k_2_sin01 -

3k_2q_ _ sin201 - cosO1 eax + ea_bsinO1 x

To, = -cos20:k_2q_+ 4cosO, k_2_b_sinO: +

2k_2_sin2Ol - cos01 eg4_z - %sin#, z (4.132)

T_ h = &hcosa v h - cosa v cos_/, cosO] ea4_(_ + cosOl %_sina v -

cosa v cosO] easin_b - cosa v cos01 eaq_2sin_b -

cosa v cos01 eg_b_sin_, - 2cosa v cos_, ea_sinO, -

%_b2sinav sinO, - %_b_sinap sinO, +

cosa v eg_bsimb sinOi - cosav %_sing, sinO: +

cos01 easina p 01 - cosav cos01%q_sinl/, t_: -

egfbsina v sinO, 01 - cosav egsin!/, sin01 01 + cosav cos,_, u +

2cosa v simb/L - cosa v cos!/, fi - cos%, sin_b v + 2cosa v cos_b/_ +

cosa v sin4, fi + sina v ,b + cosa,, cos,/, z - ahcos_b sinap :r +

&hCOS_b sina v z -- _3aCcos,p sina v z + _cccos_, sina v z +

2/}csCOS_b sina v :r - 2&hsina v sin_b z - 2_Gcsina v sin_p z -

/3assina v sin_b z + _}cssina,, sin_b z - ._h -- sin,/, Z(h +

2cos_ .X_h + sin_ X_h

Zy n = cos¢ cosO, eg - cosap h_h + COS¢ COS01 eaq_2 +

cos¢ cosO, eg¢_ -- cos01 eg¢_sin¢ --

cos¢ %¢sin01 + cos¢ egq]sin01 -- 2eg_sin_, sin01 +

cos¢ cos01 eg¢01 + cos_/, egsinOl Oa + sine u --

2cos¢ t_ -- sin_/,/i + cos_b v + 2sine _3- cos¢ fi +

cos_/, Chsina_, x -- cosg, q]_sina_, x + sin_/, :r + 2q_sinc b, sin_/, :r --

/)h + cosa_, cos!b X(h + 2cosa. sine x_h + hsina. _h -

(4.131)

(4.133)
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cos,  cos ,

T, n = -cosap cos01%¢ + 5hhsinap --

CO8¢ COS01%¢¢sinap -- COS01%sinap sine --

cos0, %¢2sinap sine -- cos01%¢¢sinap sine +

cosap %¢2sin01 + cosap %¢¢sin01 --

2cos¢ %¢sinap sin01 + %_inap sine sin01 --

%_inap sin_b sin01 - cosap cos0, %01 -

cos01%¢sinap sine/_1 + cosap %¢sin0l _1 -

%sinap sine sin01 01 + cos_/, sinap u + 2sina v simb t_ -

cos_, sinap _ - sinap sine v + 2cos¢ sinap _3+ sinap sine i3 -

COS(3tp W _If.. ahCOSOtp COS_ X -- OthCOSO_ p COS_3 37 "/f- flGcCOSOtp COS_ X --

cos¢• - 2h  coso ¢os¢• + 2 os¢ +

cos_ sinap x + 2t_hCOSa r, sine x + 2_GcCOS%, sin_b x +

_Gscosap sin_b x - _csCOSap sin_b x - Chsin_ x +

Chsin_b x -- J_h

Tab = --_h h2 + cos¢ cos01%h¢¢ + cos01%hsin_b +

cos0, %h¢2sin_/, + cos01%h¢¢sin¢ +

2cos_ %hCsin01 - eghCsin_/, sin01 +

%hCsin_b sin01 + cos01 eghCsimb 01 +

%hsin_, sin01/_1 - cos_ hu - 2hsin_ _ + cos_ h/_ +

hsin_b v - 2cos_b h/_ - hsin_b i) - cos_, hx -

cos,/, cos0_ %¢z - 2cos_b hChsinap x + hChsinap sin_b x -

hChsinap sin_b x + cos_b %¢_sin01 x +

cos_ %¢¢sin01 x - cos,/, cos0, %0_z +

(4.134)

(4.135)
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T_h

cos¢ %¢sin01 01z - cos_b _bx + O_hCOS ¢ 2X2 --

,_h_OS¢2x2+ _Gcco_f 2_2 _ hoccos¢ 2z2 --

23_s_os__ + 2_os,_.co_¢_ +

2_hCOS _ sine x 2 + 2/_Gccos¢ sin_b a:2 +

/3CSCOS¢ sine x 2 -- 13ascos¢ sine x 2 --

cosap cos_b Chsin_b x 2 + cosap cos¢ Chsin¢ x 2 + cosap h:_:h +

cos¢ sinap XYCh+ hsinap/_h -- cosap cos¢ xk'h +

cosap hsin¢ Xfh + cos¢ sinap sine x2(h -- 2cosap cos¢ hz_h --

2cos¢ 2sinap z2_h -- cosap hsin¢ Z_h --

cos_ sinap sine Z2_h

COSap COS¢ COS01 egh - cosap 2h2¢h +

¢os_ cos_cos0,%he_+ cos,_co_¢co_0,,,h¢$ -

cosap cos01%h$_in¢ - cosap cos¢ %hCsin01 +

cosap cos_b eghCsin01 - 2cosap eghCsin¢ sin01 +

cosap cosg, cos0a %h¢01 + cosap cos¢ %hsin01 01 +

cosap hsin¢ u - 2cosap cos¢ h_ - cos%, hsin¢ fi +

cosap cos¢ hv + 2cosap hsin_b _3- cosap cos¢ hi.; +

cos01%sinap x + cosap cosg, hChsinap x --

2cos%, cos¢ hChsinc b, x + cos61 egq_2sinap x +

cos01%$q_sina_ x + cosa_ hsin¢ x +

cosap cos0_ euCsin_ x - &hhsina_, sin_ x +

2cosap hChsinap sine x - e_¢sinap sin0, x +

%¢sinap sin01 x -- cosap euq_2sin_b sinai x -

cosap %$¢sin¢ sin01 x + cos0_ eaCsinap 01z +

(4.136)
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T_h
w

cosap COSO 1%simb _Jlx + %sinap sin01/Jl:r -

cosap %¢sin¢ sin01 t_lx - 2sinc_p fix + sina v vx -

sinap/;x + cosa v sine @x + cos¢ 2¢hsinap 2x2 --

cos_, 2¢hsinap 2z2 -- ahcosap cos_/, sing, x _ +

fihcosap cosg; sine x 2 -- flcccosap cos_b sin_b x 2 +

/_accosap cos¢ sine x 2 + 2/_cscosap cos¢ sin_ x 2 -

2cos¢ q_hsin¢ x 2 + 2cos¢ q_hsin%, 2sine x 2 -

2_hCOSa,, sine 2x2 -- 2_accosa,_ sinS, 2x2 --

_asCOSa,_ sin,k 2z2 + _asCOSap sine 2x2 + Chsin¢ 2X_ --

Chsin¢ 2X2 -- COS%, h_lh -- cos_' sina v Zijh +

sin,/, X_h + cos%, 2COS¢ hx_h + cosa v cos_b 2sinav X2_h +

2cosap 2hsin¢ x_h + 2cosap cos¢ sinap sin_b x_h +

cosa,_ h2sinap _h - cosap 2cos!/, hz_h +

cos¢ hsinap _x_h -- cosap cos_, 2sinap x2_h

--(COS¢ COS81%hsin%, ) + cosap h2(_hsinap -

cos¢ cosgl %h¢_sina,_ - cos¢ cosg_ %h¢_psina v +

cos91%h¢¢sinap sine + cos¢ %hCsinap sin91 -

cos_, %h(_sinap sinO_ + 2%h(_sinap sin_, sing, -

cos¢ cos01%h¢sina,, _1 - cos_b %hsina_ sin01 _1 -

hsin%, sin_, u + 2cos¢ hsinap ,} + hsin%, sin_, fi -

cos_/, hsinap v - 2hsin%_ sin_b ,5 +cos,) hsina_ {) +

cosa_ cosO1%x - cosa_ _cos_ hChz + cosa_ cosOl %¢_z +

cosa v cosO_ ea¢_px - cos_/, hChsinap _x +

cos_b h_bhsinap _x -- 6hCOSa p hsin¢ x - hsina v sine x -

(4.137)
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T_GC

cos0, %,_sinap sin_ z - 2h,_hsin% 2sinq, x -

cosap %¢sin0x z + cos% %_sin01 x +

%¢2sin% sin_ sin0a x + %¢¢sin%, sin_ sin0i x +

cos% cos0a %¢_1x - cos0a %sina v sine _xZ +

cosap %sin0x 01z + %dsinap sine sin0x 0ix -

2cos% fix + cos% vx - cosap fix - sinap sin,/, ff,x +

cosap cos_, _dhsinap x 2 - cosap cos_ 2q]hsinap x _ +

ahcos¢ sin%, sin_ x z -- &hcos_ sin%, sin_ x _ +

/3accos_ sinap sin_, x 2 --/_cccos¢ sin%, sin,/, x 2 --

2/_GSCOS_ sin% sin¢ x z + 2cos%, cos¢ _hsin% sin,/, :r 2 +

2&hsinap sin,/, 2x2 + 2/_Gcsin% sin,/, 2:r2 +

_assina v sine _x 2 - _assinap simb 2x_ + sine xYch +

hsinap Yh -- cosap cos¢ xflh -- cosav cos¢ hsinap X_h +

cosa v 2cos¢ _x2G + sine 2X2(h --

2cos%, hsin%, sin_b x_h - 2cos¢ sin_/, x2¢a +

2cos%, 2cos¢ sin¢ z2_h - h_sinav 2_h +

2cos%, cos¢ hsinap x(_ - cosav 2cos¢ _x 2(h -

sin_b 2x2_h

cos_b %¢_sin01 x - cos¢ cos0_ %_x +

cos¢ %¢sin0, _x - cos_ (vx - _sx _ +

aacostb _x 2 - &hcos¢ _x 2 + _Saccos_, 2z_ -

+ 2cos,  +

2&hcos_b sin_b x 2 + 23accost, sin_b x 2 +

(4.138)
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T_Gs

Bcscos_b sine x 2 -/3Gscos¢ sine x 2 -

cosap cos_b Chsin¢ x 2 + cosap cos_b Chsin_, x 2 +

/3assin_b 2x2 + cos¢ sinap x_ch - cosap cos¢ zz.h +

cos¢ sinap sine X2(h -- 2cos¢ 2sinap Z2(h --

cos¢ sinap sine Z2(h

= --COS01 eaCsin_, x + ea¢2sin¢ sin01 x +

eu¢¢sin!/_ sinOa x - cosOl %sin_ 01z +

%_in_b sin01/Jlx - sine ,Yox + _GCX 2 --

_aCcos¢ 2x_ + ahcos_ sin_ x 2 -- fineos¢ sin_ x 2 +

/3cccos¢ sin_b x 2 -- _accos¢ sin!/_ x 2 --

2/_asCOS_ sin_ x 2 + 2cosap cos_ 3hsin¢ z 2 +

2g_hsin,/, 2x2 +/3ccsin_ 2x2 +/3assin_b 2x2 --

/3Gssin¢ 2x2 -- cosap Chsin_ 2X2 + cosap (_hSim/' 2X2 +

sinap sin_ X_h -- COSap sine X_h + sinap sin,/, _x2(h --

2cos_ sinap simb z_(h - sina_ sine 2:r_(h

(4.139)

(4.140)

4.5 Structural Contributions to Mass, Damp-

ing, and Stiffness

The contributions of the structural model to the element mass, damping, and

stiffness matrices is derived in this section based on the strain and kinetic energies

formulated in the present chapter. The total energies produced by the hub and

blade can be summed as

_SU= [ N_=_SU_] +_SUh (4.141)
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for the variation of elastic strain energyand as

_T = [ N___I_STb]+ _Th (4.142)

for the variation of kinetic energy. Application of Hamilton's principle then gives

the discretized form of the total energy as

/ ¢,r_SI-I= (,SU_ - 8T_ - ,SWi) de = 0 (4.143)
I

where i is the ith element of the rotor blade which is discretized into Nb elements.

For the present section, the work contribution is zero (the structural model con-

serves energy).

The element for which the present structural matrices are defined is the same

one used in the past UMARC formulations for metal blades which has 15 discrete

degrees of freedom. It is possible to base the present anisotropic beam formulation

on this element only because the static condensation process is used to eliminate

the shear degrees of freedom from the strain energy formulation. The continuous

degrees of freedom for the blade are related to the discrete degrees of freedom for

this element as follows:

fi = [Hs]_ (4.144)

At

u = [H:] _ (4.145)

fi" = [H:'] _l (4.146)

u = [Hs]_ (4.147)

u = [H,]q (4.148)

where the shape function matrix is defined as

[H,] =

H,, 0 0 0

0 Hb 0 0

0 0 Hb 0

0 0 0 H_

(4.149)
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and the discrete (nodal) degreesof freedomare definedas

I I ! I0 = [ul u_ _3 _, vl v, v_v_ wl w_w_ w_¢1 ¢5 ¢3] (4.150)

The shape function matrices are matrices of polynomials which satisfy Eqn. 3.151.

H, is a 4 x 1 matrix of C O continuous cubic polynomials, Hb is a 4 x 1 matrix

of C 1 continuous cubic polynomials, and H_ is a 3 x 1 matrix of C O continuous

quadratic polynomials.

The hub degrees of freedom are already discrete, and may be written in matrix

form as

_Ch -_ [Xh Yh Zh Oth Ch _h fiGC fiGS] (4.151)

4.5.1 Blade Matrices

The total energy variation as given by Eqn. 4.143 contains variational terms of both

the blade and the hub. The terms which are coefficients of the blade variational

degrees of freedom _ constitute the blade equations, and the terms which are coef-

ficients of the hub variational degrees of freedom 6_h constitute the hub equations.

The present section deals with the blade equations which may be written in matrix

form as:

_Vi-_Ti -.- _qT([Mbblq-q-[Cbb]q-_-[Kbb]q-'_[Mbh]Xh -4F[Cbh]Xh-q-[Kbh]:Ch-- Fb)i (4.152)

where the subscript b indicates association with the blade, h indicates association

with the hub, and i indicates the ith element of Nb elements of which the blade has

been discretized. Each of these matrices may be partitioned by the blade and hub

degrees of freedom; (u,v, w, or 4) of the blade, and (Xh, Yh, Zh, Oth, Ch, _h, fiGC,

163



or/3as) of the hub which appear in the energy expressions. For example,

M._ Muv M_ M_

Mvu M_. M_,o M_

M,,,,, Mwv M_,_, M_,_,

M_.M_.M,_M,_

(4.153)

Based on the strain and kinetic energies derived in the present formulation, and

after substitution of Eqns. 4.144-4.148, these matrix partitions are defined as fol-

lows: the blade-blade mass matrix is symmetric so that only the upper trianglular

terms are listed as

_o 1M,,,, = mHSH,,ds (4.154)

M._ = 0 (4.155)

M_ = 0 (4.156)

Muo = 0 (4.157)

LM_v = mHTHbds (4.158)

M.w = 0 (4.159)

ZM,,, = - m%sinO1Hrb Hcds (4.160)

/o'M, ow = rnH_H_ ds (4.161)

M_ = fnlrn%cosO1H[H, ds (4.162)

ZlM,_ = mk_H,H¢ds (4.163)

the blade-blade damping matrix is anti-symmetric so that Cij = -Cji and the

upper triangular terms are listed as

CI$U -'- 0

Guy _ - fo 1

Cl$1lO _ 0

2rngtH,,T Hb ds

(4.164)

(4.165)

(4.166)
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C,_¢ - 0 (4.167)

fo1 fo1C,,,, = 2mf_%cosO1HJ'r Hbds - 2mf_%cosO1Hbr Hb' ds (4.168)

Cvw = -- fo12mQflpHbTHbdS-- fo12mQ%sinOIHbTHb 'ds (4.169)

C.¢ = 0 (4.170)

C_,,_ = 0 (4.171)

C,_¢ -- 0 (4.172)

C_¢ = 0 (4.173)

the blade-blade stiffness matrix is

terms are listed as

symmetric so that only the upper triangular

fOK_ = I_AH_ H'_ ds

K_,v = - F_,AccosO1H,_a'Hb " ds

fo I HuIT Hb"K_ = - /_Acsin01 ds

_01- ''T' f01K,,¢ = EA_2OoH,, He ds + EETH_,'T H,' ds

Kvv = FAH b H b ds - mfl_HbT Hb ds

+ f l (F'I1sin201 + /_I_cos201 ds

K,,,_ = (_EI_ - F,I1)sinOlcosOlIIJ'r IIJ ' ds

l£_¢ = folrnf_2egsinO1HbrHcds-folmxf_:%gsinOiHb'THe_ ds

+ff (E/Ucos01 - K/'Fsin01)Hb"rII, ' ds

- fo 1 _pFA(Hbtr H¢ + HbT H¢ ') ds

K_U2 "-"

gw¢

K¢4, =

(4.174)

(4.175)

(4.176)

(4.177)

(4.178)

(4.179)

(4.180)

/o /o'1 u,Tu, ds + (/_l_sin20_ + El tcos201)Hb"THb" ds (4.181)FA_,b _ab

o1 mxfl2 egcos01Hbrr H¢ ds +

fo _ /_q2si nO1 )HJ'TH_ ' ds (4.182)(ErFcos0l+

j_o1 m_2(k2m2 - k2rnl)COS2Ooy, THdpds "JC 0_01GJH¢ITH¢ ds (4.183)
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and the constant force terms are the sameas thoseassociatedwith the original

UMARC formulation, and are listed for completenessas

_01
Fu = mx_2 Hu T ds

= flm(  % os01 + Oo%sin8l)Hb T ds

fo mx %cos91 Hb rr ds

F_ = -./1 m(fl2flpx + Oo%sinO_)Hb T ds -

o mx_2 egsinOi Hb 'T ds

F_ = -_ ,_k_Oo + mfl_(k_ - k_ l )sinOl cos61H¢ T ds

fo a m_2 fiv%cosOlxH¢, T ds

(4.184)

(4.185)

(4.186)

(4.187)

The underlined terms in the above equations are the additions to the blade-blade

structural matrices for the present formulation over those of the UMARC metal-

blade helicopter formulation. These terms account for the elastic coupling between

extension, bending, and twist deformations as well as the precone effect which cou-

ples lag bending and twist deformation. These terms represent significant contri-

butions to the original formulation because 1) it allows inclusion of elastic coupling

based on the classical beam element thereby reducing analytical modifications, and

2) accounts for the pitch-lag coupling due to precone which will be shown to have

a significant impact on tiltrotor stability predictions. The reduction in classical

beam stiffnesses due to coupling with shear deformations is accounted for by use

of the effective beam properties as indicated by the overbar on the terms affected.

The original form of the equations associated with these properties is unchanged

from the metal blade formulation. As shown, there are no modifications to the

original mass, damping, or force blade-blade system matrices.
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The blade-hubmatricesare alsopartitioned, for example:

(4.188)

Basedon the strain and kinetic energiesderived in the present formulation, these

matrix partitions aredefinedasfollows: the nonzeroterms of the blade-hubmass

matrix are given by,

/0'M_,¢h = mxsinap Hb rds (4.189)

£M_,¢h = mzcosap Hb T ds (4.190)

/0'M_,,h = -- rnsinap Hb Tds (4.191)

L'M_,,, = mcosap Hb T ds (4.192)

M¢,,, = - fo _ m%cosO_sinap H, T ds (4.193)

/o'M¢,,h = mcosap %cosO1H¢ T ds (4.194)

/o'Me,_h = - mx%sinOlsina_, He T ds (4.195)

/o'M,,¢h = -- mxcosap %sin01H¢, T ds (4.196)

the nonzero terms of the blade-hub damping matrix are given by,

f01C_,,¢ h = - 2m zsina v H_, T ds (4.197)

2C_,,¢h = - 2m xcosap H. Tds (4.198)

fo HJ TC_,_h = 2m x%cos01sinap ds (4.199)

/o'C_,¢h = 2m xcosap %cosOllIb rr ds (4.200)

C,_,, h = 2m x%sinOlsinap Hb rr ds (4.201)

Io'C_,¢h = 2m xcosap easinO1Hb cr ds (4.202)
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and all the terms of the blade-hub stiffness matrix are zero. Many terms from the

energy expressions which appear to contribute to the system matrices are made

zero by the following relationships:

21r

r]a_,a(s)cos¢ d¢ = 0 (4.203)

f02" a(s) sin¢ d¢ = 0 (4.204)

a(s)cos_bsin¢ d¢ = 0 (4.205)

Since these terms are summed over one rotor revolution in the coupled-trim and

stability calculations (to be discussed in Chapters 6 and 7) the net influence is zero,

and there is no need to include these terms in the system matrix calculations. All

terms associated with the hub motion are new, and do not appear in the original

UMARC formulation. There are, however, parallels between the formulations when

the pylon angle is set to zero degrees (straight up like in helicopter mode). In this

case the hub-related system matrices of the present formulation will match the

fuselage-related system matrices of the original UMARC formulation, except that

the hub (or fuselage) yawing degree of freedom, ¢'h, was not included there.

4.5.2 Hub Matrices

This section deals with the hub equations which may be written in matrix form

as:

A = 8&T([Mhb]_ + [Chb]_ + [Khb]_l + [Mhhlxh + [Chh]Xh -_ [Khh]&h -- Fh) (4.206)

where, again, the subscript b refers to the blade and h refers to the hub. These

matrices are partitioned by the associated degrees of freedom in the hub and blade

similar to the examples of the previous section. Based on the strain and kinetic

energies derived in the present formulation, the matrix partitions are defined as
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follows: the nonzeroterms of the hub-blade mass matrix are given by,

fOM_.,,_ = mxsinap Hb ds

£M_h,_ = mxcosap Hb ds

M_h,,. = - msinap Hb ds

M_h,_, = mcosa v Hb ds

£M_h, ¢ = - m%cosOlsinap H_,ds

M.h,, = mcosap %cosO1H_ ds

£M,_,¢ = - mx%sinO_sinap I-I. ds

£M_h,¢ = - rnxcosap %sinO1Hcds

(4.207)

(4.208)

(4.209)

(4.210)

(4.211)

(4.212)

(4.213)

(4.214)

the nonzero terms of the hub-blade damping matrix are given by,

C¢ h ,u w. fjf)l

C_h,v ---- fo 1

C(h ,,, = fa 1

C_h,v = fo 1

Cch ,w : f l

C(h,w = fo I

C ¢_h,_ =

C(h,Cb

2m xsinap H. ds

2m x%cos0xsino v H( ds

2m xcosap H,, ds

2m xcosap %cos01Hb' ds

2m x(j3psincrp Hb - %sin01sin_p Hb') ds

2m x(/3pcos%, Hb - cosap %sin01HJ)ds

fo 1 xl3p%cosOlsin%, H_
2m ds

fo 1 x/3vcosa v %cosOl H,2m ds

(4.215)

(4.216)

(4.217)

(4.218)

(4.219)

(4.220)

(4.221 )

(4.222)

and all the terms of the hub-blade stiffness matrix are zero.

The nonzero terms of the hub-hub mass matrix are given by,

j_O 1
= m d,s

/o1= - m cosa v h ds

(4.223)

(4.224)
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_01Mvh,ttt ' = rrt d8

/01M, Jh,¢h = m cosa v h ds

M_.,_. = - mh sin_v ds

£M,,,,, = mds

M..,_ h = - mh sinap ds

M,_h,xh = -- m cosav h ds

£M_.,. h = - mh sinav ds

Z1M_.,_ h = m(h 2 + ¢os2_ x 2) ds

Mah ,_GC ""

M_h,_h _--

M_h ,_h =

M_h,_GS

M_a,Yh

_h,dRh

M(h ,(h

M(hJ3GS

M_Gc,ah

_GC ,_GC

M_GS,_h

M_GS ,(h

M;gGS,BGS

oI mcos2¢ z _ds

fo h 2 cos2g, sin_av x 2 sinS,/, x 2) dsm(cos2_p + +

fo m(-cos% h2sin% + cosap sin_vCOS2_ X 2 ) ds

£= m - ¢osa r sin2¢ x 2 ds

= - mhsinav ds

m(-cosc_v h_sinav + cosap cos2_b sinav x 2) ds

m(h2sin2av + cos2av c0s2¢ x 2 + sin_¢ x 2) ds

m sins v sin_g, z 2 ds

= fo 1

_-_o1

=_o 1

Jo1= m cos2_ x 2 ds

£= m cos2¢ x 2 ds

= - rn cosav sin2¢ x 2 ds

£= m sina v sin2¢ x 2 ds

£= m sin2¢ x 2 ds

(4.225)

(4.226)

(4.227)

(4.228)

(4.229)

(4.230)

(4.231)

(4.232)

(4.233)

(4.234)

(4.235)

(4.236)

(4.237)

(4.238)

(4.239)

(4.240)

(4.241)

(4.242)

(4.243)

(4.244)

(4.245)
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the nonzeroterms of the hub-hub damping matrix aregiven by,

/:C_h,, h = 2m cosap cos2¢ x _ ds (4.246)

C_h,¢ h = 2m cos2_ sinc_p x 2 ds (4.247)

/01C_h,_cs = 2mcos2_b x 2 ds (4.248)

Z1C¢h,o h = 2m cosc_p sin2¢ x 2 ds (4.249)

C¢_,_ac = 2m cosc_p sin2¢ x 2 ds (4.250)

Cch,_ h = 2m sinc_p sin2_ x 2 ds (4.251)

Z1Cch,_ac = 2m sinc_p sin2_ x 2 ds (4.252)

CO_c,¢h = 2m cosc_p cos2_, x _ ds (4.253)

C_c,¢, = 2m cos2¢ sinap x 2 ds (4.254)

C_6c,ea s = 2mcos2_ x _ ds (4.255)

ZC_as,_h = 2msin2¢ x 2 ds (4.256)

C_Gs,_a c = - 2msin2_ x 2ds (4.257)

and the nonzero terms of the hub-hub stiffness matrix are given by,

./1 cos2¢ x 2 ds (4.258)K_h,_cc

L1Ke_h,_cs = coscs, sin2_ x _ ds (4.259)

KCh,_GS = -- sinc_ sin2_b x _ ds (4.260)

_ cos_ :r_ ds (4.261)K oac,,_

Ke_c,_ c = -cosec x _ ds + K_a c (4.262)

ZK_as,¢_ = - sinc_ sin2¢ x _ ds (4.263)

ZK_s,_a s = - sin_¢ x _ ds + K_ s (4.264)

Again, several terms from the energy expression are made zero because they have

no net influence after integration around one revolution of the azimuth. It may
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be surprising that there are nonzeroblade-relatedterms in the hub-hub stiffness

matrix. These terms do not add stiffnessto the hub as they appear to do, but

serveto cancelout the blade-relatedhub-hubmasscontributions to stiffnesswhich

occurwhenthoseterms are transformedinto a nonrotating referenceframe. Notice

the similar form of the blade-relatedmassand stiffnessterms of the sameindices.

The blade-relatedmassterms are necessarybecausethe bladescontribute to the

overall inertial propertiesof the hub. The natural processfor theseinertial terms

is to contribute stiffness when a transformation from the rotating system to a

fixed system takes place. The hub degreesof freedom are in a fixed system,but

it is intuitive that there should be no stiffnesscontributions from the blade to

the hub stiffnesses(in vacuum). The energy expressionstake this into account

by subtracting thesestiffnesscontributions out, as is the role of the blade-related

hub-hub stiffnessterms listed above. The contributions from the hub strain energy

areshownin the form of the stiffnessesl(_a c and Kt3as. There is no strain energy

associated with any of the other six degrees of freedom because they are, at present,

free in space. The stiffness that will be associated with these degrees of freedom

comes from the wing during the stability analysis matrix assembly process to be

discussed in Chapter 7.

4.5.3 Wing Matrices

The wing is discretized as an elastic beam using the same beam element as that

of the rotor blade. Because of this, the structural mass, damping, and stiffness

matrices are the same as those for the rotor blade with a very few modifications.

First, the wing is fixed so Q = 0. This makes all the structural contributions to the

damping matrices zero also. Second, there is no precone so all terms containing/3p

are zero. Third, there is no twist or control collective or cyclic to the value of 01

is zero. Fourth, the hub motions are self-contained in the wing matrices so there
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areno wing-hub matrices. The wing systemmatricesare thus given as

[M_,_] = [Mbb],(/3p= 12= 0a =0) (4.265)

[K_] = [Kbb] ,(/3p = 12 = 01 = 0) (4.266)

[C,o_] = 0 (4.267)

The motion of the wing is coupled to the hub (for stability calculations) by the

six wing tip nodal displacements which correspond to six of the hub degrees as

follows:

Wing dof Hub dof

u, = -Yh (4.268)

vl = xh (4.269)

!

vl = Ch (4.270)

wa = zh (4.271)

w'l = -¢h (4.272)

¢1 = -ah (4.273)

' ' and ¢1 represent the discrete degrees of freedom at thewhere ul, Vl, ?)1 _ Wl _ el

wing tip. For trim and performance analysis, the wing is assumed to be rigid, and

the hub degrees of freedom are fixed.
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AirplaneMode

/

Helicopter Mode

Figure 4.1: Basic tiltrotor configuration used for derivation of equations of motion.
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Hub translationsassociated
with wing deformation.
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wing deformation.
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Wing after deformation

Figure 4.2: Tiltrotor coordinate system definition: inertial and wing reference

frames showing hub motions.
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Kw

Kh

Figure 4.3: Tiltrotor coordinatesystemdefinition: wing and hub referenceframes

showingpylon angleand rigid pylon offset.
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I

#
#

Ir

Figure 4.4: Tiltrotor coordinate system definition: wing, hub, and rotating-blade

reference frames.
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A

K h

Figure 4.5: Tiltrotor coordinate system definition: hub and gimbal reference frames

in fixed system.
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Figure 4.6: Tiltrotor coordinate system definition: hub, rotating-blade, and

undeformed-bladereferenceframesshowingpreconeand gimbal angles.
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Chapter 5

Aerodynamic Modeling

The tiltrotor configuration requires several substantial modifications to the he-

licopter aerodynamic modeling as available in UMARC. The modifications are

necessary because of the large angle of attack of the pylon and requirements for

additional hub-related degrees of freedom for the tiltrotor model. The required

changes are extensive, and thus it becomes necessary to derive the new aerody-

namic system equations from basic principles. This derivation is performed in the

current chapter.

The aerodynamic formulation is limited to the quasi-steady aerodynamics mod-

eling. The quasi-steady aerodynamic analysis assumes the blade loads are a func-

tion of instantaneous blade section angle of attack at each blade spanwise location.

Furthermore, the section lift, drag, and moment coefficients are based solely on

s*_atic data associated with the airfoil of the particular spanwise location. The

quasi-steady aerodynamic loading is dependent on the local velocities of the blade

which are functions of the free-stream velocity, blade motion relative to an inertial

frame, hub motion relative to an inertial frame, and the fuselage motion relative

to an inertial frame. Fuselage motion, however, is not considered in the present

formulation. It is apparent that the blade loads are motion dependent (functions of

the hub and blade degrees of freedom), and as such they contribute to the system
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mass, damping, and stiffness matrices as well as the load vector.

The aerodynamic forces are initially calculated in the deformed blade frame.

This is particularly advantageous for a tiltrotor configuration because in the de-

formed frame, the high-inflow aerodynamics, which create difficulties for the aero-

dynamic modeling of rigid blade linear systems (because of high inflow angles),

are treated in precisely the same manner as the helicopter low-inflow aerodynam-

ics. The main difference between the helicopter and tiltrotor aerodyamics is in the

transformation matrices which relate the blade loads and velocities in the deformed

frame to an inertial frame of reference.

In the first section of this chapter, the local blade section velocities are derived

in the deformed blade system. The aerodynamic loads associated with these ve-

locities are defined in the following section, and are transformed into the inertial

reference system. The work performed by the loads is derived in the next section,

and Hamilton's principle is used to obtain the discretized finite-element matrices

associated with the hub and blade degrees of freedom. The aerodynamic model

for the wing is discussed in the final section of this chapter.

5.1 Derivation of Local Rotor Blade Velocities

The velocity components in the three principal deformed frame axes are derived

using the same reference frames as those used to define the structural model in

Chapter 4. There are three contributions to the velocities considered in the present

derivation: the aircraft forward flight velocity, the blade motion, and the hub mo-

tion. As mentioned previously, the fuselage motion contribution is not considered

in the present formulation. The general expression of the local velocity vector at

a particular blade station can be written relative to any frame of reference as

(5.1)
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where l_b,l_h,and V_, represent the blade, hub and relative wind contributions,

respectively, to the total velocity. Each velocity vector will eventually be defined

in the deformed blade reference frame, but it is advantageous to initially define each

contribution in separate frames and transform the results into the deformed frame.

The wind velocity and hub motions are initially defined in the inertial reference

frame, while the blade motions are initially defined in the rotating reference frame.

The relative wind velocity is given by

_/w -_- __R _ - _i_-_R f_h (5.2)

where # = V/fIR is defined as the advance ratio and _i is the induced flow produced

by the thrusting rotor. The advance ratio in this case is defined in a slightly

different form than that used in pure helicopter theory where/_ = Vcos ao/_R.

The induced flow is shown to be defined in the hub reference frame because thrust

is defined perpendicular to the hub plane. The wind velocity is written in the

inertial reference frame in vector form as

1_o = ({ttf_R, 0,0} + {O, O, -$,ftR}[Tg,]) j, (5.3)

k,

The contribution of the blade and hub velocities is determined by taking the

time derivative of the position vector in the inertial frame. This approach elimi-

nates the need to determine the time rate of change of a local rotating reference

frame with respect to an inertial frame since the local frame in this case is the

inertial frame. The position vector of an arbitrary point on the cross section of

the deformed blade is given by:

= {Zh],,yhJ,,zhf¢,} + + {(z + + (5.4)

which may be written entirely in the inertial reference frame as

g = ({Xh,yh,Zh} + {O,O,h}[T_,]+ {(x + u),v,w}[T_,]
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{'}+{0, j, (5.5)

The blade and hub degrees of freedom are functions of time as is the azimuth angle

¢ which may be written as _t. The precone angle _p is assumed to be constant.

The velocity due to blade and hub motions is then defined by

+ t_h _ a/_ _ vb.i, + vb, J, + t_/_', (5.6)
ot

The wind velocity as defined by Eqn. 5.3 is then subtracted from the hub and blade

velocity contributions. The total velocity is then transformed into the deformed

frame as follows

+ gh- = ({ , , }+ {- . n, o,o)

+{O,O,)qaR}[Th,]) [T,a] Ja (5.7/

which is simplified to the notation

9_hw = UrL + U, Jd + L,_ r2"_ (5.8)

where Ur, Ut, and Up have been nondimensionalized by the rotor tip speed _R. In

these expressions the following substitution is made to account for kinematic pitch-

lag and pitch-flap coupling which may be produced by the gimbal rotor system

controls geometry:

0_ = 0a + kz3G + k¢(h (5.9)

After application of the ordering scheme, and substitution for the rotating frame

gimbal angle 13c in terms of fixed frame gimbal angles /3cc and /3cs (as defined

by Eqns. 4.1 and 4.2), the velocity components are defined in terms of the blade

and hub degrees of freedom. These velocities are listed in the equations to follow.
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Each velocity component is separated into constant (subscript c), linear (subscript

l), and nonlinear parts (subscript nl), and the linear part is written as a coefficient

of the system degree of freedom with which it is associated. The radial component

of velocity, which is positive moving from root to tip, is given by

Ur = Rc + R, + R,_ (5.10)

and

Rc = A/3p -/.tcosap cos¢ - r/_cos0, + p&sinap (5.11)

Rt = R,, + R,, + R,,, + ... + R_c c + R3G s

R_ = 0 (5.12)

P_ = -1 (5.13)

R,,, = /tcosap sin¢ + x (5.14)

= 0 (5.15)

R_, = )_ + p/3pcosap cos_/, + psinap (5.16)

P_ = 1 (5.17)

R+ = 0 (5.18)

P_ = 0 (5.19)

R,_, = -T/rcos01 (5.20)

R_,, = -r/_sin01 (5.21)

Re = r/_sin01 (5.22)

Rd = 0 (5.23)

R,_ h = p(cos_ sinap + 13pcosap ) (5.24)

R_h = 0 (5.25)

R¢_ = psin_, (5.26)
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Rt3_c = Acos¢ + _cos¢ sin%, + r/,sin¢ sin01 (5.27)

R_ s = Asin¢ +/_sina v sine - rt_cos¢ sin01 (5.28)

n_ h = -(/3vsina v - cos¢ cosa v ) (5.29)

R_h = sine (5.30)

Rim = (cos¢ sina v +/3vcosa v ) (5.31)

Ram = -hcos¢ - r/_cos¢ sin0l (5.32)

R& - hcosa v sine + fir(sin _ cosa v sin01 - cos01 sina v ) (5.33)

R_h = -r/_cosa v cos01 -- hsina v sin_., - r/_sina v sine sin01 (5.34)

R3G c = -r/_cosCsin01 (5.35)

R_o s = -r/,sin_, sin01 (5.36)

P_, = 0 (5.37)

Rnl is given a zero value using the ordering scheme. As will be shown later in

this chapter, the radial component of velocity only contributes to the aerodynamic

forces through the drag terms which are at least an order of magnitude smaller

than the lift terms. The tangential component of velocity, which is positive moving

from leading to trailing edge, is given by

and

u, = T_+ Tt + T,. (5.38)

Tc = pcosap cos01 sine + Asin0a + _vcosa v cos¢ sin01 +

psin% sin01 + xcos01 (5.39)

T, = T, + T_+ T,, +... + T_ + T_

T_, = cos01
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T,, = /3vsin01

T v, = -)l/0pco801

= -/3pcos01

T_, = -A/3psin01

= 0

T_ = cos01

T,_ = sin01

Tv = 0

Tw, = 0

T_GC

T_GS

- pcosO, (_psinap - cosg' cosap )

- _sin01 (/3psinap - cosg' cosap )

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

= -#cosap sin01sing' + Acos01 + _3pcosg' cos01cosap +

psinap cos01 - xsin01 (5.50)

T_ = 0 (5.51)

T,, h = -/t/3pcosg' sinap sin0a + p(cosap sin0a - cos0, sinap sing') (5.52)

T,h = 0 (5.53)

TCh = pcosg' cos01 -- _uflpsing' sin01 -- Acos01 k¢ -

p/3pcosap cosg' cos01 k_ - pcos01 sinap k_ (5.54)

#cosap cosg' 2sin0a - xsing' sin0a + Acosg' cos01 ka +

/_/3pcosap cosg' 2cos0x kt_ +/_cos_/, cos0x sinap kz (5.55)

ktcosap cosg' sing' sin01 + cosg' sin01 x + Acos01 sing'., kz +

p/3pcosap cosg' cos01 sing, k_ +/_cos0x sinap sing' kz (5.56)

T_ h = -/3pcosap cosg' sin0a - (cosa_, cos0x sing, + sinap sin0_ ) (5.57)

Toh = cosg' cos0a - flpsing' sin01 (5.58)

Ti h = -13pcosCsinapsin0a + (cosapsin0_ -cos0l sinapsing') (5.59)

T,_ h = h(cos0_ sing' +/3pcosg' sin0_ ) + x(cosg' sin01 + &cos0_ sing' ][5.60)
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Z_h

Z(h

z/_cosc_ cos¢ cos01

= -hcos_/, cosO, sinap

hcosap cos¢ cos01 -/3phcosap sin_, sinOa +

- x(sin¢ cosap sin01 - cos01 sinap )

+ _phsinap sine sin01 + xcosap cosOx

-x_gpcos_/, cosOl sinai, + xsinap sine sin01

xcos_, sin01

xsin¢ sin01

(5.61)

(5.62)

(5.63)

(5.64)

Tnl /3GcCOS¢ sin0i v +/3cssin_ sin01 v -- Ai3GcCOS¢ cos01 v' --

p/3cccos¢ cos01 sinap v' -- A/3asCOS0a sin_, v' --

I_escos01 sinap sine v' + cos01 vv' --/3cccosg, cos01 w --

13GscosO1 sin(., w -- A/3cccos¢ sin01 w' --

#_GcCOS¢ sinap sin0a w' -- A/3Gssinlb sin01 w' --

pflGssina_, sin_/, sin01 w' + sin01 vw' +

/_¢Y_cCOSapcos¢ acos01 k_ +

2tzflaCflGscosa p COS_ 2COS01 sin%bk_ +

#3_sCOS%, cos$ cos01 sine 2k_ +/3accos¢ cos01 tbk_ +

/3asCOS01 sin_, d, ka +/_h'GCCOSap cos_b 2cos01 w'ke +

/t$GSCOSap cos_, cos01 sine w'ka +

_ac3accos¢ 2cos01 zk_ + _ac_ascos¢ 2cos01 zk_ -

/3_cCOS_/, cos01 sin_/, xk_ + _GC_GSCOS_) COSO1 sin_, xk_ +

/3_sCOS_b cos0a sin%b xkz + _GC_aScos_' cos0_ sine xkt_ -

flGCt3ascosOx sin_b 2xkz + _GS_aSCOSO, sine _xkz -

p/3accos¢ sine sin0a (h -- _U/3GSSin¢ 2sin0, (h --

pCOS01 sine V'(h -- _usin_ sinOa W'_h --
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gSGcCOS% cos¢ _COS81k¢(h --

p_3GsCOSap cos¢ cos01 sin,/, k¢(h -- cos01 ,bk¢(a -

_cos% cos¢ cos01 w'k¢¢h - 3occos¢ cos01 zk¢¢h -

_cscos_b cos01 zk¢(h + _GccosOi sin_b xk¢(h --

3GsCOS01 sine xk_( h + cos_b 2cos01 X(h 2 +

cos2ap cos01 sine 2X(h2 + cosap sinap sine sin01 X(h 2 +

fleccos¢ hsinap simb sin01 _h + _Gshsinap simb 2sin01 _h +

cos_b sinap sin01 V¢h + cos81 hsinap sine v'_ -

cos¢ cosOa sinap W_h + hsinap sine sinS_ W'_h --

/3vccos!/, 2cos01 sina v X_h -- _escos¢ cosO 1 sina v sine X(h +

flGCCOS¢ COSOasinap sine xk_h +

flvscos01 sinai, sinl/, _xk_h -- cos01 sina,, sin,/, xk¢(h_h (5.65)

The perpendicular component of velocity, which is positive moving down through

the rotor, is given by

up = Pc + P_+ P.t (5.66)

and

Pc --- AcosO1 -I- ]_pcoso_p cos¢ cosO 1 -_-5p_r + _COSO1 sinap

--pcosap sine sinO1 + rb01 -- xsinOx (5.67)

P, = P=+P_+P_,+...+P_+P_

P,, = -sinOa (5.68)

P_ = /3pcos01 (5.69)

Pv' = A/J,,sinOa + #sinOx (/3psin%, -cos¢ cosap ) (5.70)

P,. = /3,,sinO, (5.71)
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P_,, = -A3vcosO_ + _ - #cosOx (3vsinav - cos¢ cos% )

P,_ = 0

P,:, = -sin01

P,/, = cos01

P,_, = 0

P_,, = 0

P_ = -/_cosa v sin01cos¢ - Asin01 - #/3vcos¢ sinOlcosa v -

psina v sin01 - xcos01

= 0

P,,h = laCOSa v cosOx - lasina v (/3vcos¢ cos01 -- sine sin01 )

P_h = 0

P¢_ = -/_(cos¢ sinO_ + flvcosO, sin_/, ) + _cosa v cosO 1 sinE, k_

+xcos01 k¢

P_ac = pcosa v C0$¢ 2C0801 + C08¢ _r -- XcosO1 sine -

#cosa v cos_/, cos01 sine k_ - xcos¢ cos01 k_

Pt3cs = _ucosa v cos_b cOSOl sine + r/_sin_b + xcos¢ cosO1 -

/zcosa v cos01 sine 2k_ - xcosOa sine k_

P_h = --/3vcosa v cos_b cos01 + (sine cosa v sinOa - cosOl sina v )

Po_ = -(cos¢ sinO, +/3pcosO, sine )

P_ = cosav cos01 - sina v (_pcos_, cosO1 - sine sin01 )

P_h = -r/,sin¢ + h(_vcos _ cos01 - sin_ sin01 ) + xcos_h cosO1

-x_3vsin¢ sin01

Pch = --c°sav cos_/, r/_ -- hcosa v (cos¢ sinOx +/3vcos01 sine ) -

x/3vcosa v cos¢ sin01 - x(cosa_, cos01 sine + sina v sinO, )

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)

(5.79)

(5.80)

(5.81)

(5.82)

(5.83)

(5.84)

(5.85)

(5.86)

(5.87)

(5.ss)

(5.89)
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"P_h = cos_/, r/.sina v + hsina v (costk sin01 +/3vcos01 sin_/, ) +

x/3vcos_/, sina v sin01 - x(cosav sinO1 - cosOa sina v sine ) (5.90)

= zcos_/, cos01 (5.91)

-- xcOSOl sine (5.92)

Phi _GCCOS_ COS01V +/_CSCOS01sin_b v +

AflGCCOS_, sin01v' + p_cccosg' sina v sin01v' +

)_flGssin_b sin01v' + #3GSsina v sing, sin01v' --

sinOlvv' +/3GCCOS_b sin01w +

/_Gssin_ sin01 w -- A_accos_b cos01 w' -

p3accos_ cos01sina v w' - A/_Gscos01 sin_, w' --

#flcscosOlsina v sin_b w' + cOSOlVW' --

_acCOS_ cos01_k_ - _accosa v cos2_cosOlv'k_ -

I_flGsCOSa t, cos_, cos01sin_ v'k_ - pflcscos01 sin2_(h +

/_sin_ sinOl v' (h - pcos01sin_b w' (h -

lZflGC COS2_bCOSOl kBfh -- _flGSCOS_b cosOlsin_/, ka(h +

cOSOl (;k((h + #COSa v COS_b COSOlV'k((h +

cosa v cos0asina_, sins x(h 2 -- cos_,sinO_ x(h _ --

cos2av sin2_sinO_x(h 2 + #cos_ cos0_k¢(h 2 +

_Gccos_b cos0_hsinav sin_b (h + flGScosOxhsinav sin_(h +

cos_, cos0asina v V(h -- hsina v sing' sinO_v'(h +

cos$ sina v sinOlw(h + cos0_hsina v sing, W'(h +

13ac cos_¢sinav sinO_x(h +/3aSCOS_ sina v sire/, sinO_x_h +

flac cos _cos0a hsina_, kO_ h -}-/_GSCOS_ COS01 hsina_, sin_ kB( h -
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13aCCOSap cOS_2 cOSOlxkn_h -- jSascosap cosOlsim/' xkn_h +

COS_p cOSOl Xk(_h_ h -- 3GScosOasin_Z' iakl3 --

#3cccos_' cosOlsin¢ (h + /3aSCOS_' cosO1 hsina v sin6, kz_h -

cos¢ cosOlhsinap k¢(h_ h (5.93)

5.2 Quasi-Steady Airloads

Since the blade velocity is defined in the deformed blade system, the quasi-steady

airloads based on two-dimensional strip theory are identical for tiltrotor and heli-

copter configurations. Only the contributions to the velocity components U_, Ut,

and U v are changed. The following generic airload expressions are derived in the

UMARC theory manual (Ref. 79), and are applicable in the present formulation.

The nondimensional blade forces are written in the deformed reference frame

([- )c - "/f"2 Ct (5.94)
6a

(D)c - . f/2Cd (5.95)
6a

7f/'2C c (5.96)
( ]ff_c)c - 6aR m

with the aerodynamic coefficients defined at the quarter-chord position by

CI = Co + cla (5.97)

Cd = do -t- dl I_ I +d2 2 (5.98)

Cm = fo + far (5.99)

where Co is the zero-angle lift coefficient, cl is the lift curve slope, do is the vis-

cous drag coefficient, f0 is the zero-angle pitching moment about the aerodynamic

center, dl and d2 are coefficients used to curve-fit drag polar data, and fl is the

moment slope. In the present theory, it is assumed that the aerodynamic center is
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sufficiently close to the quarter-chord that the quarter-chord may be used to de-

fine the aerodynamic coefficients. Under this assumption, the parameter fa should

be zero. It should also be noted that the coefficient da does not have a physical

significance as do do and d_ in defining the two-dimensional drag, but is provided

as a means for improving the curve fit of drag polar data. The coefficients defined

above are valid only for incompressible attached flow conditions. Compressibility

effects are accounted for by application of the Prandtl-Glauert factor to Cl

Cl IM=0

(:1 = VI -- M 2 (5.100)

This correction is valid only for subsonic conditions with M < 0.9.

The blade forces of Eqns. 5.94-5.96 may be expressed in the deformed reference

frame (about the elastic axis) as

_ @'_
(L_)c - --_-a (Clcosc_+ Cdsina) (5.101)

-_i)"2 ,,,_ .
(Zv)c -- "6a [Lqslnct-- Cdc°sct) (5.102)

(L,)c -
6a (--Cd sin A) (5.103)

(1%/c - c
6a (_Cm)- ed(]-,_)c (5.104)

The following approximations are valid in the deformed reference frame:

sina -_ a-_ UT (5.105)

cos a __ 1 (5.106)

? ur (5.107)

uR
sinA __ _T (5.108)

and the expressions for the aerodynamicThe approximations of Eqns. 5.105-5.108

coefficients in Eqns. 5.97-5.99 are substituted into the expressions for rotor forces

from Eqns. 5.101-5.104:

(Zw)c - "7 (CoUT 2 _ (c1 q- do)UTUp -t- dl IUPI up)
6a (5.109)
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(L.)c = ff_-(-doUT2- (coUp-d, IUpI)UT + (Cl --d2)Up 2) (5.110)
6a

7 (-doURUT) (5.111)(L_)c- 6a
7 c

(_I¢)c - 6a R (f°(UT2 + UP2) - f, UTUp) - ed(L_,)c (5.112)

The aerodynamic forces of the deformed frame may be transformed into the unde-

formed system via the transformation matrices defined previously in this Chapter

{A/{ }(L_)c (L_)c

A = [T_d](Lv)c (Lv)c
A(i_)c (L_)c

(M2)c = (.'f/¢)c

(5.113)

(5.114)

These equations for the circulatory lift and pitching moments can be modified to

account for reverse flow and Mach effects as described in the following sections.

5.2.1 Reverse Flow

In helicopter mode at high forward flight velocities it is possible for the inboard

blade section to experience reverse flow. This occurs when the forward flight veloc-

ity exceeds the local rotational velocity. When this occurs, the aerodynamic center

of a typical airfoil shifts from approximately the quarter chord to approximately

the three-quarter chord position. More exactly, the velocity terms derived in the

previous sections may be modified by the following equations if UT < 0:

c (5.115)ed n = ed+2---R

rl_R = -ed n (5.116)

where the superscript R indicates the reverse flow value.

5.2.2 Mach Number Perturbations

The blade forces are modified by the local Mach number as well as the angle of

attack. Perturbations in the local Mach number and angle of attack must be
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taken into account for an accuratestability solution. The perturbation of the lift

coefficientmay be written as

OCl sc_ OCt5
_c, = _ + g-_ i (5.117)

The perturbations of angle of attack and Mach number are given by

t_
- UT (5.118)

Up_SUT -- UT_Up

5a = UT 2 (5.119)

M_o UT

M - _ V = M_,ftR (,5.120)

5M = My 6UT
f_R (5.121)

Assuming the Prandtl-Glauert modification of Eqn. 5.100 applies, the derivatives

of the lift coefficients are given by

OCt c, IM=O
= (5.122)

Oo v/1 - M 2

oc, _ 1__°ct(
OM 2 0o_ 1 - M2)a (5.123)

These equations give additional terms to the lift forces so that the new forces are

given by

(L)c

(5.124)

(5.125)

(5.126)

(5.127)

where the additional perturbation terms contain c2 and

1
c2 = -aav_ - M 2 Cl IM=O

L
(5.128)
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The variation of the lift coefficientwith respect to Mach number is needed,and

can be obtained either from experimentaldata or from analytical relations. The

experimentaldata are generallyavailableas part of the typical 2-D airfoil data in

the form of lift coefficientasa function of Mach number. The applicable valueof

canbe calculatedfrom this data using finite differencetechniques.OM

5.2.3 Noncirculatory Airloads

The noncirculatory contribution to rotor blade forces, arising from pitch and plunge

motions of the local airfoil section, are derived in this section. For a basic airfoil

undergoing pitch and plunge motion in the presence of an oncoming headwind, tile

noncirculatory lift and moment forces are given by [87]

LNC = prrb2(h - ahb(_) + prcb2U5

MNC

= L_+L3

1 _ ah)bL3 pTrb4= - --g--a

(5.12.q)

(5.130)

(5.131)

For the airfoil section of a general rotor, including tile tiltrotor, the' following

definitions apply and define the forces about the elastic axis

U = flR(x + ttsin¢cos%)

C

ahb = ed + "_

= -_

= 0i

& = _/1

C
b = -

2

(5.132)

(5.133)

(5.134)

(5.135)

(5.136)

(5.137)

The noncirculatory airloads act on in the undeformed blade reference frame. Sub-

stitution of the above Eqns. 5.132-5.137 into Eqns. 5.129-5.131 gives the noncircu-
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latory airload contributions as

A
(Lw)NC

(M2)NC

1 2 (c ..= -_prcc (-(b+ 4 -_ed)O1 -Jr-_'_]2_(x-Ji-#sin_cos%)t},)

c= pTrc2 (( ÷ed)_--(-_+ea)2Ol--aR(_+ea)(z+ttsin_

C201

32 )

(5.138)

cos_p)0,

(5.139)

The nondimensional form of these equations, as required to add with the nondi-

mensional circulatory airloads derived previously, are obtained by dividing the lift

by rnoD2R and the moment by mof't2R 2, yielding

A
(Lw)NC

(M2)NC

"_lr_ _ c R12a (-R + (4-R + )0'+ (x + #sin_cos (_p)01) (5.140)

_r_ c _ tb c e_12a (_-_ + (_ - 01) - 9-_ + -_(x +/t sin ¢ cos ap)t?l

C201

3,_) (5.141)

The total airloads in tile undeformed blade reference frame are then given by

L_ = (LA)c (5.142)

L A = (LA)c (5.143)

A
L_,A = (L'_4,)c + (Lw)NC (5.144)

-M;4 = (M2)c + (M2)Nc (5.145)

5.3 Finite Element Discretization of Work

All the work done in the system is a result of the aerodynamic forces of the rotor

system. Although the airloads originate at the blades, net rotor forces are de-

veloped which are dependent on the blade, gimbal, and hub motion, resulting in

contributions to the mass, damping, and stiffness system matrices. As mentioned

previously, the gimbal degrees of freedom are for convenience considered part of the

hub motion since they too are defined in a nonrotating frame. The finite element
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formulation for the work doneby the hub and rotor systemis then written as

5W = y_ 5Wb + SWh (5.146)
rn=l

where 5!A_ represents the work performed by perturbations of the blade degrees of

freedom and 514,_ represents work performed by perturbations of the hub degrees

of freedom. Work is represented mathematically as

R A

ewb = fo (L__ + LOeb,+ L_am + M2a¢)dx (5.147)

L A A A 2_I2 are,,, L v , L,_, and the distributed aerodynamic forces acting in the rotating

blade reference frame. Similarly, the work done on the hub is expressed as

5Wh = Gh,Szh + Gh'_Yh + F_hSzh + M_Saa + M,_,5¢h + M_SG

+ M, acS flac MzasS /3as (5.148)

where each force and moment is the net load acting on the associated hub degree

of freedom. For the present formulation it is convenient to write these net forces

and moments as the sum of a set of distributed forces and moments acting along

the blade.

F_ = F_dx (,5.149)
rn----1

Fyh = foR F_ dx (5.150)

Nb R

F=_ = _ fo F4 dx (5.1,51)
m----1

Nb jolt AM,_ h = __, Mohdx (5.152)
rn=l

M_h = M A dx (5.153)
m=l

Nb rR

Mch = _=,Jo M_dx (5.154)

Nb R A

M'ac = _ fo M'acdX (5.155)
m=l
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M_Gs = M2_dx
rn=l

(5.156)

Each of the distributed loads is designated by a superscript A to differentiate

it from the other loads. The distributed aerodynamic blade loads L A, L A, L A,

and M_ are transformed into the reference frame of the associated hub degree of

freedom. This transformation is given by

rZ

M]_c

M#Gs

= TrL (5.157)

The transformation TFL is not part of the regular transformation sequence intro-

duced in the beginning of this chapter, but it is derived in the following section.

Also, the present TEL matrix is different from that associated with the original

UMARC formulation because of the three additional hub forces: M_h , M_Gc, and

M]_s.

5.3.1 Derivation of the TFL Matrix

The transformation of the blade airloads into the nonrotating frames is described

in this section. Six of the eight required force components, FAh, F A, F_, M_h ,

M_ah, and M_ are defined in the inertial frame while the remaining two, M_c c and

M_cs, are defined in the hub system.
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The three directional forcesare transformed into the inertial frame by

/ }F A = Ti,, L A (5.158)

which, after application of the ordering scheme, gives terms up to second order.

There are many more second-order terms in the present formulation than in the

UMARC formulations because the ordering scheme of the present formulation as-

sumes that the fuselage degrees of freedom are of O(_) rather than O(_). There

are enough additional second-order terms that it is impractical to list them all.

Only the first-order terms are listed:

= --LAc%coso_p + L2cosc_p cosg' -

LAflvCOSC% cos_b a-- L,_3ccCOSap cos2g' - L_sinc_p -

L2_psin_ p - L2crhCOS $ sinap -- L2flacCOS$ sin%, +

--LAcos_v sin_ a- L,.3cscoso_ v cos_p sin_ + LA&hsin&v sing' --

LA_Bcssinap sin_, - LAcos_b (h- LAsing' (h (5.159)

LAcosg' + LAcos%, Sh + LAcos_/' Chsinop +

LAsing' -- LA3psing' -- LA/3ccCOSg' sing' --

LAShsin%, sing, -- LAflcs sin2g' +

LAcosoq, cosg' _h -- LAsin(_p (h -- LAcoso_p sing, _h (5.160)

L cos.p+L2a cos. +L2, ,cos, pcos +

LA_cccosotv cosg' -- LAcosg' dPh -- LActhsinc_p +

/Acosg' sina v -- L_f_pcosg' sin%, -

A
L,_3cc cos2g'sin%, - L_Ac_hCOS%, sing' +
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L_ascosav sin¢ - L_aChsin¢ -

LAsinap sin!b -- L_/_asCOS_l, sinav sin¢ (5.161)

The next transformation involves the inertial frame moments which have contri-

butions from both the blade moment and the blade forces.

-M A = T,a 0 +r,u x {LA]_ + LvJ_, + L,_I(,,} (5.162)
Oth

M_A 0

where r_, is the position vector defined from the origin of the inertial reference

frame to an arbitrary point on the blade elastic axis in the undeformed frame.

Note the negative signs on M_h and Mah indicating that these moments are in

the opposite direction of the normal right-hand rule convention for orthogonal

transformations. The position vector is defined as

ri, = {O,O,h} 3_, + {x + u,v,w} 3,_ (5.163)

which may be written in the inertial frame as

hI[Tw,l+{x+u,v, j, (5.164)

After carrying out the cross product of Eqn. 5.162 and application of the ordering

scheme, the inertial frame aerodynamic moments are listed up to first order as

--M2h = ._/I2ahcos¢ sinav + _/f/_tflcccos¢ sina, -

LAahcOS_p hsinap A-- 2L,_acCOSav cos¢ hsin¢ +

l_'I_l_assinap sing., - LAahhsinav sin_b -

A 2 L_sinav2L_cscosav hsin¢ + u -
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L_cos% sine u - LAcos% cos¢ v -- LAsin% v +

_hT/_cos% sine v' + LAcos% cos¢ w +

LAcos% sin_, w + _/_sin% w'+ L_ahcos%x +

L_flacCOS% coQ¢ x - LA_acCOS% cos_, sin_ x +

LAahsin% sin¢ x- L_flasCOS% sin2¢ z + Lacos_ h_h -t-

37/_sin¢ (h -- LAhsin¢ (h -- LAcos¢ x('h +

LA_GSCOS% COS_' sin_ x

2LA_GcCOQ_, h - 37I_tcos_b Chsin% +

LAcos¢ hChsin% + 2LA_SvsCOS_- , hsin¢ +

LAhChsin%sin¢ + LAcos¢ u- LAsin¢ v-

/17/_cos¢ v'- LAcos_, w + LAsin¢ w +

LA/gacCOS2¢ x - LAcos% ChX +

LAflaccos_b sin_, x + Laflascosg , sing., z -

LA(bhsinavsin_ x + LA/_assin2¢ x --

MAcos,_ ¢ose (_ + La¢os,_ co_¢ h(_ +

LAcosav hsin_b (h + LCsin%, X(h --

LAcos% sin_b X(h

(5.165)

(5.166)

._'/_ahCOS% cos¢ +

M_'_coso,, cos¢ - L_,_h¢OSO,_¢os¢ h -

LAcos¢ hdPh +/_¢_GsCOSOt. simp -

LAahcoscb, hsin_b -/17/¢¢hsin¢ + LAhChsing, +

2LAflvccos¢ hsin%, sing, +

2LAl_eshsin%, sin2_b + L_cosc b, u +
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A L_cos¢ sina,Lasinav sine u -- L_ cosc_v v + v -

2f/_sinc_v sine v' - L_cos¢ sin_v w -

L_sin_p sine w + hT/_cos% w' + L_cos¢ ehx -

A 2
Lva_hsinc_p x - L_ flGCcos _bsin_v x +

LA_hcOSOp sine x + L_flaccos¢ sin_p sine x -

L AL_flcsCOS¢ sin(_v sing., x + _ flassmn_v sin2¢ x

In similar fashion, the gimbal moments are given by

-M2o c = Tha 0 + rh= x {L_]_ + L_J= + L_I(,=} (5.168)

U_ A 0

where only the moment -M_c c is a negative moment in the transformation sense.

The third moment is a repeat of the previous torque moment derived in Eqn. 5.165,

and is simply used as a place-holder and check on the previous work. The position

vector is now defined as

rh_ = ({x 4- u, v, w}[T_h]) Jh (5.169)

kh

and after substituting this expression into Eqn. 5.168, carrying out the cross prod-

uct, and applying the ordering scheme, the gimbal moments are listed up to first

order as

(5.167)

•M_G S A • L_cos¢L,osm!b u + v -

2Q'_sin¢ v'- L¢cos¢ w-

LAsin¢ w -- L_aflcccos2_ x +

A
L,, flaccos¢ sine x - L_ flasCos_, sin_/, x +

L_flGssin2¢ x (5.170)
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= L_cos_b u - L_sin_b v -

•t 'cos¢v'- L cos¢w+

L_sinV w + L_flaccos2¢ x +

La_flGcCOS_l, sine x + L_aCYasCOS¢ sine x +

L a_/3Gssin2_b x (5.171)

A A
Taking the coefficients of L_, L_ ,L_,and 217/_ from Eqns. 5.159-5.161, Eqns. 5.165-

5.167, and Eqns. 5.170-5.171 gives the transformation matrix as

TEL = (TFL)O + (TFL)q + (TFL):_h + (TFL)q2 + (TEL)q::,, + (TFL):_ (5.172)

where the subscript 0 indicates the constant terms, subscripts q and xh indicate

linear terms associated with the blade and hub degrees of freedom, respectively,

and q2, qxh, and x_ indicate terms nonlinear in the blade and hub degrees of

freedom. The nonlinear parts of the TEL matrix did not exist in past UMARC

formulations. Again, the nonlinear parts of TEL contains numerous of terms with

the present ordering scheme. It is not practical to show these terms considering

the small contributions they have on the system, but these terms have been in-

cluded in the analysis associated with the present theory. Errors associated with

coding these terms by hand are avoided by deriving the equations using symbolic

manipulation software in which the equations may be written in FORTRAN form

and pasted directly into the files comprising the analysis. The constant and linear

contributions to the TEL matrix are listed as follows:

(TFL)O=

2O3



coscrp cos¢ -/3psincrp -coscfp sine -_pco4scrp cos¢ - sinap 0

sine cos¢ -_psin¢ 0

_pcos_p + cos_p sin_p -sinap sin_b cosop - _cos_b sincfp 0

-cos_b h sine (h + x_p) cos¢ (hBp + z) -simb

coscrp hsln¢ cosc_p cost (h + xBp) + zsinap -cosap sin¢ (x + hBp) Bpsinv, p - cosclp cos_

-hsinc, p sine -cos,,b slnap (h + z_p) + xcosc_p sinc_p sine (x + h_p) /3pcos_rp + cos¢ sinop

0 z/_psin¢ zcos¢ -sine

0 -z_3pcos_b xsin¢ cos¢

(TFL)q=

0 0 0 0

0 0 0 0

0 0 0 0

-cos¢ w sine w co8_ u - sine v -cos¢ v'

--vsinap + wcoscrp sine usinap + wcosap cos¢ -ucOSOp sin_ - vcosap cos¢ vlcosap sine + wlsinap

--vcosap -- wsin_p simb ucos_p - wcos_p sinap usinc_p sine + vcos_b sinc_p -v%in_p sin_ + w'coscrp

-wcos¢ simb w cos_b u - sine v -cos¢ v'

-sine w -cos¢_ w sine u + cos_ v -sine v'

--=inop (c_hcos@ + _GCCOS#, + .BGssin¢, ) - sing, (h

cos¢, (@hsinap + cosop (h)

cOSap cos#, (a h 4" _BGC) + sin_ (_GSCOSap - ¢_h)

hsin#,(@hsinop +cOSap(h)

h(coi_/, (,h -- ahsinop sin_ )

--h(cos_, 4, h 4- OhCO_a p sing, )

0

0

--ahcoso p -BGCcOSOp

--_GS + cosop 4% -- sinc, p (h

--c, hsinc, p -- _Gcsinop

h,_GC--xsin¢, ( ¢hsinap +co_c,p _:h)

(TFL)x h =

--cos_ (PGSSinap + (.h) + sin,{, sinop (o h + _GC )

--sine, (4_hsine, p + cOSOp _h)

_GSCOSOp co=¢, -- cosqs ¢_h -- cOSOp sine, (o h + _GC )

hcos_b {PhsinQp 4" X_GS -- zcOSOp ¢h + hcosop costs _b 4- zsin_p (h

ah(--hco_ $inap 4- arco_op ) + X_GCCOSO p -- h$1n_ _h

h( ¢hsin_ -- ohco_o p cos_ ) -- zsinop ( _h -- _GC )

X_GS

-*_GC

0

0

0

-case (4,hsinc_ p +cosC_p _h)

--h_GSCOSe, p --xcos@ (_Gssinop + (h)+xsin¢, (_,hsinop +BGcsinop ) cos#, (c_hsinc, p +_GCSinOp )+sines (_GSSinOp +(,h)

h_Gssinc, p --:rcosqs (_GSCOS_,p +¢,h)+_rsin¢, (OhCOSO p + _GCCOSC_p ) cosq, (OhCOSC, p + BGCCOS_,p )+sin#, (@GSCOSetp --@h)

0 0

0 0

5.3.2 Discretization of the Blade Equations

As previously discussed, the contributions of work are divided into work done on

the blade and work done on the hub. The work done on the blade results in the

blade equations which also have hub motion contributions, and the work done on
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the hub results in the hub equationswhich alsohave blademotion contributions.

This section will addressthe blade-bladeand blade-hub equations which result

from the variation of work done on the blade. The nondimensionalform of the

work is

,SWb = -_ 6fiTLadr (5.173)

where

6at = [uv w ¢]T (5.174)

L a = [L¢ L_ L_ M2] T (5.175)

The aerodynamic force vector, L A, can be expressed as a sum of constant, linear,

and nonlinear contributions of the blade and hub motion. This is written as

L A = (La)o + (LA)q + (LA)_h + (LA)q_ + (LA)q_h + (LA)_:_ (5.176)

where 0 refers to the constant terms, q to the blade discretized displacement vector,

and Xh to the hub displacement vector. The displacement vector, fi, may be

discretized in terms of the spatial shape functions matrix, [H,], and the blade

discrete degrees of freedom vector, _ as

fi = [H,]_ (5.177)

^!

u = [H:]_ (5.178)

u = [H,]_ (5.179)

The shape function matrix is defined as

Hu

0
[H] =

0

0

0 0 0

Hb 0 0

0 Hb 0

0 0 H¢

(5.180)
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where the shapefunctions H,,, Hb, and He are the same as those discussed in

Chapter 4. The discrete degrees of freedom are defined as

(5.181)

and the vector of fuselage displacements is defined as

_h = [xh yh zh ah Ch (h _aC _as] (5.182)

The linear terms, (]_A)q and (La)xh, of the aerodynamic force vector may written

as a sum of coefficient matrices such that

(La) + [A_]fi + [A¢]fi' + [Aa]u

+[Aa]u + [A,h]&h + [A_h]x h (5.183)

Substitution of Eqns. 5.177-5.183 into the expression for virtual work Eqn. 5.173

yields the element blade-blade and blade-hub mass, damping, and stiffness matrices

and load vectors.

= .A ^
@T([MI]_ + [cA]_ + [Iibblq + [CA]xh + [K_]&h

A
+[O¢]o + [oA]q_ + [O_]qx, + [Qb ]_,1

where the system matrices are defined as

(5.184)

[M A] = 61fo'[H,]T[Ac,][H,] ds (5.185)

[CA] = 61fol[H,]T[A_,][H,] ds (5.186)

7 1
[1/A] = -_I fo ([H']T[A"][H'] + [Hj]T[A"'][H:]) ds (5.187)

[CA] = 6 l fo'[H,]r[A_h] ds (5.188)

7 1
[K A] = -_I fo [H']T[A'h] ds (5.189)

[QA]0 = ZlfoI[H'IT[LAI°ds6 (5.190)

[Q¢]q_ = _-l fo'[Hs]T[LA]q_ ds6 (5.191)
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 ']O't".1TELA1,.h " (5.192)
= (5.193)

In the above set of equations, 3' is the Lock number and l is the nondimensional

element length. The subscripts bb refer to blade-blade matrices while the subscripts

bh refer to the blade-hub matrices. The constant load vector [Qa]0 is used in the

blade response analysis to determine the deflected trim position of the blade. The

nonlinear load vectors [Q_]q2, [QA]q=h, and [Q_]=_, are linearized about the deflected

trim position and can also contribute to the stiffness and damping matrices.

5.3.3 Discretization of the Hub Equations

This section will derive the hub-blade and hub-hub equations which result from

the variation of work done by the blade forces on the hub. The work performed

on the hub was given in Eqn. 5.148 as

`jWh = F_:h`jXh + Fuh`jYh + Fz,`jzh + I_l¢,,`jah + M,,`j¢h + M_h`j(h

+ M_Gc613CC + M_cs`jl3cs

which after substitution of Eqns. 5.149-5.156 may be written as

Nb _0 R A`jWh = __, (F/jJXh + F_`jyh + F_`jzh + MA_,Jan + M2,`jCh + M_`j(h
rn_l

+ M2c c `jflacM2cs `jj3as) dx (5.194)

N_, R

= Z fo `J_:T/,A dr (5.195)
m----1

where

kh = [`jXh `jYh `jZh 6ah 6¢h `j(h `J_aC 613aS] T (5.196)

_,A = [FA F_ F_ M_ M2_ M_ M;c c M_cs] T (5.197)

The transformation of the aerodynamic loads from the blade to the hub is then

given by

k_ = [TFLIL A (5.198)
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with [TEL] definedby Eqn. 5.172. To determine the linear and nonlinear contri-

butions to the system mass, damping, and stiffnessmatrices, and the constant

and nonlinear contributions to the systemload vector, the hub aerodynamicforce

vector/_a is divided into severalparts as

kA = (/_A)0 + (phA)q + (pA), h + (pA)q_ + (pA)q,h + (pA)_, (5.199)

and by using the TEL transformation matrix, each part is defined as

(pA)o = (LA)o(TFL)o (5.200)

(pA)q = (LA)o(TFL)q + (LA)q(TFL)O (5.201)

(-khA)_,, = (LA)o(TFL)_h + (LA)x,,(TFL)o (5.202)

(-#a)q 2 = (LA)o(TFL)q2 + (LA)q(TFL)q + (LA)q_(TFL)O (5.203)

(fi_A)qxh --" (LA)q(TFL)zh + (LA)xh(TFL)q (5.204)

(PA)_ i = (LA)o(TFL).I + (LA)_.(TFL)_h + (LA)_I(TFL)O (5.205)

Based on the above equations, the linear contributions to the force vector may be

written as

(FA)L = (LA)o(TFL)q + (LA)q(TFL)o + (LA)o(TFL)_ + (LA)=,(TFL)o (5.206)

To arrive at the linear contribution to the damping and stiffness matrices, the linear

transformation contributions need to be written as coefficients of displacements.

Let

(LA)o(TFL)q = (TFL)gfi + (TFL)g'¢_' (5.207)

(LA)o(TFL)x_ _"= (TFL)O Xh (5.208)

Recalling that the linear blade lift terms may be written as coefficients of displace-

ments as given by Eqn. 5.183, the linear force vector is then given by

(/_A)L = (TFL)_t+(TFL)g'_'

+(TFL)o(IA,,]¢_ + [A,,,]fi' + [Aa]u + [Aa]u)

+(TFL)ghX'h + (TFL)o([A.h]3Ch + [A_h]Xh ) (5.209)
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Substitution of Eqns. 5.177-5.183 into the expression for the hub virtual work

(Eqn. 5.195) yields the element hub-blade and hub-hub damping and stiffness

matrices and load vectors.

Nb

_w_ = _ _([cAb]_ + [g2b]_+ IVAn]&+ [I,'h]_
tn=l

+[Q_]o + [Q_]q_ + [Q_]q.. + [Q_]_,) (5.210)

where the system matrices are defined as

=  -16]o

[cAb] = 7--16fo I(TFL)°[A_'][H'] ds

K = 2l 1
6 (TFL)°[H'] + (TFL)o [H,]

+((TFL)o[A,,][H,] + (TFL)o[A,,,][H:]) ds

[cA] _" 216 _0 I(TFL)O[Aj:h] d,._

2,Jo'= 6 (TFL)o" + (TFL)o[A,,] ds

[0 1 :o 6 fo (F_lods

1 A

= 2tfo (F;,)ed_[Q_]q2 6

El_ol A

1 A

(5.211)

(5.212)

(5.213)

(5.214)

(5.215)

(5.216)

(5.217)

(5.218)

(5.219)

5.3.4 Nonlinear Force Contributions

Contributions to the mass, damping, and stiffness matrices are obtained from

the nonlinear force vectors defined in Eqns. 5.190-5.193 for the blade and in

Eqns. 5.216-5.219 for the hub. The procedure described here for obtaining the

nonlinear contributions is the same as that used in the UMARC formulations,

only the expanded displacement vector for the hub is used and there are addi-

tional nonlinear components of the force transformation matrix TEL. The force
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vector Q is written for the ith element as a sum of constant and nonlinear parts

as

[Q]i = [Q0]i + [QNL], (5.220)

The nonlinear element load vector is linearized about the deflected trim position

using a first order Taylor series expansion. For each nonlinear element load vector

O[QNL]
+ + [_"O[QNLlq 0 ]&h + -: xh), (5.221 /

O[QNL]

[QNL], = ([QNL] l0 -t 0_ 0-_ 0xh

Similar to Eqn. 5.183, the nonlinear contributions of the blade aerodynamic

forces may be written in coefficient form as

[LA],a = [LA]q2+ [LAiq.h+ [LA]._

= [A,,],-,tfi+ [A,,,],.afi'+ [A,_]ntu+

(5.222)

where after linearization about the deflected trim position, the nonlinear A matri-

ces are defined as:

[A=].t = [_---_[LA]nt _-_[LA]nl _---_[LA]nl _---¢[LA]nI] (5.223)

[A_,'],a = [_u,[LA],-a O--_[La]nl O--_[LA]nI _-_[LA]nI] (5.224)

JAil., = _[i%_ [LA].,8-_[LA]._ [LAI._ (5.225)
0

[A_,]._- 0_ [i_l.t (5.226)

[A_,],, = O_h[LA],a (5.227)

After substitution into the blade work equation, the nonlinear blade-blade and

blade-hub damping and stiffness matrices are given by:

[caA], a _ 76I fo I[H°]T[AI']'a[H'] ds (5.228)

.A 1 t T t
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= --_l/o [H.] [a_]., d_' (5.230)

[KbA]n ` -- _l flrH1T'A 1 (5.231)- -_ ]0 t ,Jr _j.,d_

(5.232)

which can be added to the linear stiffness matrices for stability analysis.

The nonlinear contributions to the hub equations is more difficult because of

the involvement of the force transformation matrix TEL. The nonlinear forces on

the hub are written as:

A A(E_).,= [TFLI[LAb

^A ^= (P2le+ (F_1_ + (F214 (5.233)

After substitution of Eqns. 5.203-5.205 into the above expression, and linearizing

about the deflected trim position, the nonlinear forces may be written in coefficient

form as:

^I h ^l
(fi'2),_, = [TFL]o([A,,I.,fi + [A,,,],,tu ) + (A_).tfi + [A,_,].tu +

[TFLlo[m_,l.tu + [m_],_,u +

[TFL]o[A._],,,_h+ [A_j,,,_h+

[TFnlo[m,h].txh + [A_,.l.,xh (5.234)

with the new hub-related nonlinear A matrices given by:

[A:]°,

[a:,].,
[A:]°,

[A:.].,

O . A)q(TFL) q (5.235)= (LA)o_u(TFL)q2"+ (LA)q_u(TFL)q"}- "_U (z

= (LA)oo--_(TFL)q2 + (LA)qo--_(TFL)q + O_--_(Za)q(TfL)q (5.236)

= (LA)o_u(TFL)q2 + (LA)q_--_:u(TFL)q+ _-J_u(LA)q(TFL)q (5.237)

= (LA)Oo_h(TFL)q2+(LA)qo_h(TFL)q+oO'_Xh(LA)q(TFL)q(5.238)

= (LA)oo-_h(TFL)q2+(LA)qO_h(TFL)q+o_h(LA)q(TFL)q(5.239)
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Substitution of these terms into the appropriate energy expression for the hub gives

the nonlinear contributions to the hub-blade and hub-hub damping and stiffness

matrices as:

m

,7 f l

-_l ]o (TFL)o[Ac, I,,[Ho] + [A_],,I[H,] ds

3' fl

-_l Jo (TFL)o[A,,],,t[H,] + (TFL)o[A,,,],,t[H:]

h t
+[A_],_dHs ] + (TFL)o[A,,,],_dH,]) ds

A h(TFL)o[A_.]._ +[ _.],,tds

A h(TfL)o[A,h],t +[ ,,],l ds

(5.240)

(5.241)

(5.242)

(5.243)

(5.244)

5.4 Wing Aerodynamics

As is the case with the wing structural model, the wing aerodynamic model paral-

lels that of the blade. Only linear aerodynamics are considered for the wing, and

then only for inclusion in the stability analysis. For stability, the constant load

vector is not considered, so the wing aerodynamic contribution to the wing system

matrices is given by the linear blade-blade matrices with appropriate substitutions.

The substitutions begin with definition of the local velocity vectors. Here, the wing

acts the same as the blade when ¢ = 90 ° and op = 0 °. Of course, the rotational

velocity and precone are zero for the wing. Also, the term 81 for the wing is the

sum of the wing incidence angle and the fuselage angle of attack. With these sub-

stitutions, the velocity components for the wing are given by: (Ur)_, (Ut)_,, and

(Up),, which are defined as follows:

The radial component of velocity is given by

(ur) = +
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with

(R_)_ = 0 (5.246)

(Rt),_ =

(R_)_ =

(R_)_ =

(P_,)_ = u

(P_)_ = o

(R_,)_ = o

(R_)_ = 1

(R_)_ = 0

(R_)_ = o

(R_,)_ = o

(R_,)_ = o

(R_)_ = o

(R_)_ = o

(P_)_ + (a_)_ + (R.,)_ +... + (R_)_

0

0

The tangential component of velocity is given by

(U,)_,= (T_)_,+ (T,),_

with

(Tc)w = t_cos0,

(5.247)

(5.248)

(5.249)

(5.250)

(5.251)

(5.252)

(5.253)

(5.254)

(5.255)

(5.256)

(5.257)

(5.258)

(5.259)

(5.260)

(T,)_ = (T,)_ + (To)_+ (T_,)_+... + (T_)_

(T,,),o = cos01
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(T.)_ = 0

(T¢)_ = 0

(T_)_ = o

(T_,)_ = 0

(T_),_ = 0

(T,_),_ = cos01

(T,z),o = sin01

(Tv)_o = 0

(T_,)w = 0

(T,),,, = -,usin01

(Tg)w = 0

The perpendicular component of velocity is given by

(up)_= (pc),_+ (p,)_

and

(Pc),_ = #sin01

(5.262)

(5.263)

(5.264)

(5.265)

(5.266)

(5.267)

(5.268)

(5.269)

(5.270)

(5.271)

(5.272)

(5.273)

(5.274)

(P,),_ = (P_)_+ (P.)w+ (P¢),o+... + (P,)w

(P,,)., = o

(P,_)_ = 0

(P,_,),,, = 0

(P,_),_ = o

(P,,,,),o = 0

(P_,),,, = 0

(P,_),_ = -sinOx
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(5.277)

(5.278)

(5.279)

(5.280)
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(P_)_ = cos8_ (5.282)

(Pi,,),,, = 0 (5.283)

(P_,,)_, = 0 (5.284)

(Pc),o = _cos01 (5.285)

(P¢),_ = 0 (5.286)

These velocity components can then be used to form the aerodynamic con-

tributions to the wing mass, damping, and stiffness element matrices using the

derivation provided in this chapter for the blade-blade equations. The corrections

provided in those sections for including Mach number perturbations and noncir-

culatory airloads are also applicable to the wing aerodynamic model.
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Chapter 6

Vehicle Trim and Blade

Response Analysis

Vehicle trim refers to an equilibrium of forces and moments on the aircraft, in-

cluding the rotor steady force contributions. The rotor system loads depend on

the blade response, so the determination of the airframe trim and blade response

is coupled together. Thus, the procedure is referred to as "coupled trim", and is

an important part of rotor analysis.

The present chapter is divided into three major parts: 1) formulation of the

vehicle equilibrium equations, 2) formulation and solution of the blade response

equations, and 3) discussion of the coupled trim procedure. While much of the

solution procedures discussed in the present chapter are similar to those used in

UMARC, there are some new requirements for the present tiltrotor formulation.

The major modifications for the present formulation are as follows: the definition

of new tiltrotor-related vehicle trim equations, the creation of a new rigid-blade

high-inflow analysis for estimating initial controls, capability of recalculating the

Jacobian matrix in the coupled trim procedure, and estimation of elastic blade

twist in both the rigid-blade and elastic blade analyses.
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6.1 Vehicle Trim Equations

The vehicle trim equations consist of the definition of two vectors describing the

state of trim: the vehicle force residuals F and the trim unknowns _ which will be

referred to as the control vector. The force residuals define the equilibrium bal-

ance of the rotor hub forces and the airframe forces which are functions of the trim

unknowns and the blade response. The trim unknowns are the quantities to be

solved for in the coupled trim procedure. The lengths of these vectors are the same

and depend on the flight condition and associated assumptions which can be made

in regard to the force balance. For the tiltrotor model of the present formulation,

three trim options are offered, and are classified as: free-flight, wind tunnel, and

axisymmetric trim. General free-flight trim considers equilibrium about a conve-

nient point in the vehicle and assumes symmetric level flight. This option includes

a balance of forces from the rotor, wing, horizontal tail, and the fuselage. Wind

tunnel trim for the tiltrotor configuration assumes a cantilevered wing and rotor

model, and excludes consideration of the airframe (fuselage, wing, and horizontal

tail) forces. Axisymmetric trim is a highly simplified scheme applicable to the

hover and axial flight cases in which only the rotor thrust balance is considered.

6.1.1 Free-Flight Trim

For the tiltrotor free-flight trim scheme, symmetric level flight is assumed. This

implies that only one of the rotor systems need be considered and that the opposite

rotor is a mirror image of the one under consideration. Under this assumption,

the vehicle roll and yaw moments and the vehicle side forces balance by definition,

independent of the actual loads on the rotor, wing, horizontal tail, and fuselage.

The free-flight trim may be used to solve the trim equations for any of the tiltrotor

flight modes: hover, helicopter forward flight, conversion mode, or high-speed axial

flight. However, simplified trim schemes are available and may be desirable for
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flight conditions wherea reducedset of unknownscanbe used.

A side view of the free-flight geometryis shownin Figure 6.1 (other views are

not necessarybecauseof the assumptionof symmetry). As shown, the steady

rotor thrust, drag, and pitch momentcontribute to the aircraft equilibrium which

is establishedat a point in the fuselagewhich hasthe samex and z coordinates as

the pylon pivot point. Aerodynamic loads from the tail section, wing, and rotor

are also considered, and the wing and tail may each have incidence angles built-in

which are added to the angle of attack of the fuselage. Lateral and roll moments

on the aircraft are balanced by the assumed symmetry of the flight condition, but

to restrain flapping to a minimum, lateral flapping moment at the rotor itself (M_,

not shown in figure) must be zero. The forward component of thrust balances with

the aircraft and rotor drags while the wing lift and vertical component of rotor

thrust must balance with the vehicle weight. The rotor side force and rotor torque

balance due to symmetry. The force equilibrium is written in terms of a vector of

force residuals/¢' in which

.f'=0 (6.1)

when trim is complete. There are four force residuals for the tiltrotor symmetric

free-flight trim which are given by

FI = D I + D,_ + D, - (Tsin% - Hcosav ) (6.2)

F2 = LI + L,,, + Lt + (Tcosc_p + Hsinav ) - W (6.3)

Fa = M r + (M_)! - W(z,_sinc_! + x_cosa!)- D!zw +

M_, + Mt - Dt(z_ - zt) - Lt(xt - x_,) + hH (6.4)

F, = m_ (6.5)

These equations are derived from the force and moment diagram illustrated in

Figure 6.1, and all quantities are in nondimensional form. F1 and F2 represent the

vertical and horizontal force residuals, respectively, F3 represents the longitudinal
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(pitch) moment residual,and/74 representsthe lateral moment residual about the

rotor hub. T, H, Mx, and M v are the rotor thrust, drag, roll moment, and pitch

moment, respectively. These forces are balanced by the lift, drag, and moments

(L, D, M) associated with the fuselage, wing, and horizontal tail (subscripts f, w,

and t), and by the vehicle weight, W. act and ac,o indicate the longitudinal distance

between the fuselage center of gravity and the quarter chord position of the tail and

wing, respectively. Similarly, zt and z_, indicate vertical height above the fuselage

center of gravity of the tail and wing, respectively. The fuselage forces appearing

in the residual equations are defined as follows:

/z2 7Nb f (6.6)
DI - 2 3aa A

t? 7 Nb
D_ - S_(Ca),_ (6.7)

2 3aa

#2 7__Naba St( Ca)t (6.8)Dt - 2

1_2"rNb st( ct )._ (6.9)
L/ - 2 3o'a

la2 _ S,.,,(C,o),_(o_! + (ao)_) (6.10)
L_, - 2 oa a

Lt - 2 St(C,o)t(oq + (ao)t) (6.11)

(M_)I 2 3--_abCM' (6.12)

_2 7Nb S
M,,, - 2 3_a ,.,,(Cm)wc_, (6.13)

#_"rNb st(C,,,)tc ' (6.14)
Mt - 2 3aa

and the rotor forces are calculated in the hub plane based on a finite element in

time solution. In the above equations, 7 represents the Lock number, Nb is the

number of blades, a is the reference lift curve slope of the rotor blades, a is the

blade solidity, f/A is the fuselage fiat plate area, a0 is the incidence angle of the

wing or tail with respect to the fuselage (angle of attack when al is zero), and

CMI is the fuselage pitch moment coefficient without the wing or horizontal tail

included.
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The unknown quantities to be determined in the coupled trim procedureaxe

given in vector form as

/_T = [a! Ors O,c O,0] (6.15)

where a, is the fuselage angle of attack which is the same as the rotor shaft tilt

when the rotor pylon angle is at 0% The remaining three controls govern the rotor

blade pitch as a function of azimuth, and can be written for any blade radial station

as

0(x,¢) = Ors + 0_ + 01ccos¢ + 0,,sine (6.16)

where 0;,5 is the pitch angle defined at the 75% radial station (essentially the

collective pitch setting defined at .75R), 0_ is the difference in pitch between the

75% radial station and the radial station at x which is given by the built-in blade

twist (twist may be nonlinear), and 01c and 01, are the cyclic pitch angles.

6.1.2 Wind Tunnel Trim

For the tiltrotor configuration, wind tunnel trim refers to a cantilevered wing and

rotor system. Here, there is no need to include fuselage, wing, or tail forces in the

force residual calculations. There is no fuselage angle of attack, and the pylon is set

at a steady value given by c_p. The force residual equations for this configuration

are greatly simplified as compared to the free-flight case, and are given by:

F1 = T- T/ (6.17)

= (6.18)

F3 = (6.19)

F_ is the thrust residual which is the difference between the calculated thrust T

based on a current value of the collective pitch setting and the desired thrust level

Ti (an input parameter). F2 and Fa are the pitch and roll moment residuals at the

rotor hub. These residuals determine the level of cyclic pitch in the rotor system
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which is nonzerowhen an antisymmetric flow condition exists (ap not at 0° or

90o).

The unknown quantities to be determined in the wind tunnel coupled trim

procedure are given in vector form as

0T = [Ors O,c 01,] (6.20)

where the fuselage angle of attack al, has been dropped from the vector of un-

knowns as defined for the free-flight case.

6.1.3 Axisymmetric Trim

Simplified trim procedures are available for the two tiltrotor flight conditions in

which flow through the rotor is perfectly-symmetric (independent of azimuth sta-

tion), axisymmetric hover and high-speed axial flight. In the context of the ana-

lytical tiltrotor model, axisymmetric hover is a free-flight condition which assumes

that the vehicle center of gravity aligns with the rotor thrust axis such that no

cyclic control is required to balance vehicle forces and moments. Axial flight is a

wind-tunnel trim case in which the pylon angle is set to 90 ° (airplane mode). Only

one force residual equation is required for these two cases as is given by:

F1 = T- Ti (6.21)

where T is the calculated thrust based on a current value of the collective and Ti

is the desired thrust level. T, is an input parameter defined as the desired value

of thrust in the axial flight case and T/= W in the hover case. There is only one

term in the corresponding vector of unknowns:

0 T= [0Ts] (6.22)
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6.2 Blade Response Equations

An integral part of the coupled trim scheme is the solution of the steady blade

response, as this impacts the hub force calculations. The steady rotor response is

calculated for a fixed hub, so only the blade-related equations defined in Chapters 4

and 5 (hub and wing equations involved only in the stability analysis) are used,

and within these equations the hub motion terms are neglected such that:

xh = 0 (6.23)

xh = 0 (6.24)

For the tiltrotor configuration, the hub displacements are not members of the

vector of unknown trim parameters so it may also be assumed that

_h = 0 (6.25)

in the calculation of the steady blade response. The blade response is then defined

by the solution of:

_0 2r ^G

(_0ba)T([MaJ4b + [Ca]_ a + [KalOb a - Fa)d¢ = 0 (6.26)

where the blade-blade structural and aerodynamic element matrices defined in

Chapters 4 and 5 have been combined and assembled into respective global matrices

as indicated by the superscript G. The assembly process is described in more detail

in Chapter 7. For free flight trim, the blade force vector includes contributions of

the fuselage angle of attack.

To reduce computation time, the blade response equations are solved using

normal modes. The free vibration modes for the blade are calculated based on the

structural contributions to the global mass and stiffness matrices:

[M_]S_ a + [g_]S_l a = 0 (6.27)

222



where the superscript S indicates contributions only from the structural model,

and the matrix terms are calculated based on 07s = 0. This system is solved using

standard eigenvalue techniques for a desired number of model degrees of freedom,

generally 6 to 8. All eigenvalues of this system are positive real numbers, and the

eigenvectors are real and orthogonal. The global displacements are related to the

new set of modal displacements as:

(}_ = [¢]/_b (6.28)

where [_] is the N a x m modal matrix, and N a is the number of blade global

degrees of freedom and m is the number of modes. After substitution of this

relationship into Eqn. 6.26, the modal response equations are expressed as:

[2"(@b)T([M_b]_ b + [C_'bl_b + [Kh]/_b- _b:)d_, = 0 (6.29)
J0

where

[M_,b]= [¢]T[M_][¢1 (6.30)

[C;bl= [_1_[C_][_1 (6.31)

[Z_'bl= [elf [g_] [¢1 (6.32)

[F_I = [O]w[Fg] (6.33)

defines the modal mass, damping, and stiffness matrices.

6.2.1 Finite Element in Time

Solution of Eqn. 6.29 requires a numerical integration method such as Runge-Kutta

or finite element in time. The procedure used in the present formulation is the

finite element in time method, and is no different than that procedure used in the

UMARC formulations. As a matter of completeness, however, some of the details

of the procedure are established in the present section.
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A temporal finite elementbasedon Hamilton's principle is used to discretize

the azimuthal dependence(periodic part) of the blade responseequations. The

normal mode degreesof freedompb are approximated with 5th order Lagrangian

C°-continuous polynomials (6 nodes per time element).

The damping and stiffness matrices of the blade response equations contain

periodic terms, but the mass matrix does not. Application of the finite element in

time procedure is then facilitated by an integration of the response equations by

parts. Eqn. 6.29 may be written as:

T T 27r

@_ Ff - [CI_ -[KI_ de = (6.34)[
_o _b_ [Ml_bb _b_ 0 o

where the right hand side of the equation is zero because periodicity for the system

is enforced such that

/_(27r) =/_(0) (6.35)

The response equations may then be written as

where

and

fo _'_ @T[Q] de = 0 (6.36)

@b }

[Ql={-g'{-[Cl_bb-[Ig]_b}[M]_ bb

(6.37)

(6.38)

At this stage, the matrix [Q] is nonlinear since it contains _p_. Using a procedure

analogous to spatial discretization, the interval of one rotor revolution 2r is divided

into several time (azimuthal) elements as shown in Fig. 6.2. The blade response

equations are then expressed as a sum of the response over each time interval as:

f'_'+a@T[O]id¢ = 0 (6.39)
i=1 ¢i

224



where Nt is the number of time elements used. The response may be linearized

using a first-order Taylor series expansion about a set of steady state values Yo

which represent the current blade response estimate. The linearized response is

written as:

where

N, F,+, @T([Q(yo)], + [K,(9o)l,/Xf_,)dW= 0
Z J¢,
i----1

(6.40)

-[Klb a _ - [C]_
[K,]/= Of,b Obb (6.41)

0 [M]7

For the ith element, the time variation of the modal displacement vector can be

expressed in terms of the temporal shape functions and the temporal discrete

displacements as:

fib(_) = [Ht(s)]_ (6.42)

where s is the local time coordinate defined as:

s =- ¢ - _h, (6.43)
Wi+,- ¢i

and ¢i+1 - ¢i is the time span of the ith element. The number of shape functions

in the matrix [Hit depends on the level of approximation, but generally the default

approximation used in the current formulation is 6 nodes per element which yields

a set of six 5th-order polynomials. This family of polynomials is derived in Ref. 79.

The response equations can then be written in terms of the discrete unknowns as:

Nt ¢_+1

f,, _5_T[N]t([Qli + [K, li[N]A_i)dV = 0 (6.44)
i=l

where

{ [Ht(_b)] } (6.45)

After summation and assembly of the elements (which follows the same procedures

as that of the spatial elements) and conversion from a set of element degrees of
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freedom to a set of global degrees of freedom, the response equations may be

written as:

[Qla + [KlaA_a = 0 (6.46)

which is solved subject to the boundary conditions:

_(0) = _(27r) (6.47)

_(0) = _(27r) (6.48)

6.3 Coupled Trim Procedure

The coupled trim procedure used for the tiltrotor formulation is similar to that

used in UMARC, but a few modifications have been added. New segments of the

procedure are the different initial controls and modifications to facilitate conver-

gence of blades with large twist deformations. For the initial controls estimate of a

tiltrotor configuration, a new rigid-blade flap analysis is formulated which accounts

for high-inflow, large steady pylon angles, large blade twist, and the airframe forces

(wing and horizontal tail) when free flight is considered. For the convergence of

blades with large twist, the coupled trim procedure is modified so that a twist de-

formation estimate may be added to the initial controls estimate and the Jacobian

may be recalculated at given intervals in the procedure.

The basic procedure of the present coupled trim solution is shown in Fig. 6.3.

The objective is to balance the rotor and airframe forces, driving the force residual

equations to zero. It is advantageous to start the procedure with a good estimate of

the initial controls for two reasons: 1) the procedure involves nonlinear equations

and so it is possible to obtain an unrealistic or divergent solution 2) the procedure

is computationally intensive and the number of iterations needed to achieve the

converged solution depends on the closeness of the initial guess to the final solution.

Based on the initial controls, the blade response equations are solved yielding
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an initial set of rotor forcesand the blade responses(velocity and displacement

associatedwith eachdiscretedegreeof freedom). A Jacobianmatrix is formulated

to determinea newset of controlsrequired to drive the force residualto zero. The

blade responseand rotor forcesassociatedwith the new set of controls is then

calculated. This processcontinuesuntil convergenceof both the blade response

and vehicleforceresidualsis obtained. A newJacobianis neverrecalculatedduring

the iteration cycle in previousversionsof the UMARC analysis,but as shownthe

Jacobianmay be recalculatedin the presentformulation. The new procedurealso

calls for interactive support of the user when large twist deformations are involved.

A divergent process may be encountered in such situations which requires restarting

of the analysis with an improved estimate of the elastic twist. This estimate may

be gained from observations of early coupled trim iterations.

6.3.1 Initial Controls Estimate

As mentioned previously, it is advantageous to start the coupled trim procedure

with a good estimate of the initial controls. A reasonably good approximation

of the initial controls (including fuselage angle of attack for free flight) may be

obtained with a rigid flapping blade analysis. Although a rigid-blade analysis in-

eluding both flap and lag motions is formulated in Chapter 2, it assumes axial flight,

and is, therefore, not applicable to the general tiltrotor configuration. A new rigid-

blade analysis is formulated based on a flap-only rigid-blade and lift-curve-slope

aerodynamics. Because this model is applicable for the general tiltrotor configu-

ration, including free-flight conversion modes, the development is quite involved.

The formulation of the rigid-blade controls-estimate analysis is thus provided in

Appendix B.
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6.3.2 Blade Steady Periodic Response

The blade steady periodic response is obtained from solution of the global finite

element in time matrices defined by Eqn. 6.46, with initial conditions defined by

Eqns. 6.47 and 6.48. These equations represent a time discretized nonlinear set

of algebraic equations which are solved iteratively using Newton's method. Recall

that the solution vector is written as a sum of steady and perturbations quantities

such that

= _0 + A_ (6.49)

The steady global solution update for each iteration is thus given by

= + (6.50)

where convergence is obtained when A_ _ 0. In the coupled-trim procedure, this

iterative solution is coupled with the solution of the force residual equations such

that both the blade steady periodic response _G and blade control vector 0 are

obtained simultaneously.

6.3.3 Computation of Blade and Hub Loads

Solution of the force residual equations requires the contribution of the hub loads

which come from conversion of the rotating blade loads into the fixed frame. The

rotating blade loads are calculated in the present formulation using a force sum-

mation method involving integration of the local blade inertial and aerodynamic

forces along the span. Aerodynamic contributions to the blade loads are defined

in Chapter 5. Intertial contributions to the blade loads are defined in UMARC

formulations and are listed in Ref. 79. Since the hub is fixed in the coupled trim

procedure, the inertial loads depend only on the deformation associated with the

blade itself so that the tiltrotor and helicopter equations are identical. The equa-

tions for the inertial contributions to the blade loads are nonlinear, and require
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knowledgeof the bladedisplacements,velocities,and accelerations.The displace-

ment and velocity information areproducts of the finite element in time solution.

The bladeaccelerationsare calculatedfrom rearrangementof Eqn. 6.26as:

_.G G ^G
qb = [M_]-l(lO_ - [Cbb]0_ -- [K_lq$) (6.51)

The inertial and aerodynamic contributions to each of the three force and

moment directions are summed as:

L_ = L a +LI_ (6.52)

L, = L ¢ + L_ (6.53)

Lw = L A + L / (6.54)

M_, = M 2 + M_ (6.55)

M,, = M_v' + M_ (6.56)

A , t (6.57)Mw = Mo w + M_

where the loads are defined in the undeformed blade system. The rotating blade

forces and moments at the root are then obtained by integration along the blade

span:

_0 RF_ = L, dr (6.58)

/0Fy = L,_ dr (6.59)

/o"Fz = L,o dr (6.60)

/o"M_ = (M_ + L_,v- L,w)dr (6.61)

M r = (M_-L_,(r+u)+L_w)dr (6.62)

LM, = (M,, + L_(r + u)- L_v)dr (6.63)

The fixed frame loads are defined in the hub plane, and are calculated using

the Fourier coordinate transformation as:

Nb

F_ = _ (F2cos_ ,,, - F_"sinV ,,, - _3pFycosO,,,) (6.64)
rn=]
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N_

F H = _] (F_sin¢ ,_ + F_cos¢ ,, - &F_sin¢ ,,,) (6.65)
m=l

Nb

F H = y_ (F_ +/3pf_) (6.66)
m----1

Nb

M H = _ (M_'cos_b m - M_sin¢ m -/3,MTcos¢ m) (6.67)
rn= l

Nb

M_n = _ (M?sin¢ m + M_cos_b ,_ -/3vM?sin_/,m) (6.68)
m,=l

Nb

M, n = y_ (M_ +/3vM_) (6.69)
m=l

where m designates the ruth blade of Nb blades, F are the hub shear forces, and

M are the hub moments. The hub shear forces and moments may be periodic,

and are therefore expressed in terms of harmonics. Any periodic functions may be

expanded in a Fourier series as

oo

f(¢) = fo + Y'_(f,c cos n¢ + f,s sin n¢) (6.70)
rt=l

where f0 is a steady term and n denotes the nth harmonic. Expansion of the hub

forces and moments in a Fourier series gives the steady hub force and moment

terms required for the force residual equations (T, H, M,, and M_ while Y and Q

are also gained, but not required due to symmetry). The harmonic terms give the

vibratory loads of the system.

6.3.4 Inflow Update

Just as the definition of advance ratio is modified for the tiltrotor configuration to

exclude the angle of attack, so is the definition of the inflow. Normally, the inflow

has an induced-flow component and a forward velocity component. The component

of inflow due to forward flight velocity is accounted for in the present formulation

with sine and cosine terms in the equations of motion and aerodynamic force

calculations. The induced inflow, Ai, depends on the rotor thrust T (the zeroth
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harmonic of Fff), and is updated accordingly on each iteration of the coupled trim

procedure. Two inflow models are available (or the tiltrotor inflow calculations,

but these do not include the interference of the wing or fuselage on the flow. The

simplest is a uniform induced inflow distribution given by

Ai = 1.151/CT (6.71)

which is adequate for high speed axial flight where the thrust generation is fairly

uniform across the disk and the induced inflow velocity is a very small (almost

insignificant) part of the total velocity through the rotor. A more complex model

developed by Gessow [91] is used for hover:

320x .
Ai - a(Cl)i(-1 + 1 + (6.72)16

where (cl)i is the local lift curve slope corrected for Math and stall effects. This

model is important for tiltrotors because the blades generally are highly twisted

such that some part of the blade span is influenced by stall. Inflow distributions

for several blade linear twist distributions are compared in Fig. 6.4 which show

the large differences between uniform and nonuniform hover distribution models.

This plot also shows the effects of stall at high blade twists, as noted by the

increase in collective angle required to produce the desired thrust. Also, while

low twist blades have fairly uniform inflow on the outer one-half of the span (even

using the nonuniform inflow model), the highly-twisted blades have very nonlinear

distributions of inflow which should be accounted for in the hover aerodynamics.

6.3.5 Computation of Jacobian and Controls Update

The residual force equations are satisfied by changing the control vector 0 such that

the rotor forces required to balance the residual force equations are obtained. Some

of the airframe forces, of course, also shift with changes in the control vector, as

does the blade response which, in turn, influence the rotor forces. The nonlinearity
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of the problemrequirescarefulselectionof the control vector incrementssuchthat

numerical stability is maintained. To this end, theairframe forceresidual vector

/_ is linearized about the current control vector setting t_i such that

/-'(0i + A0,) =/5(t},) + [JJAt}_ = 0 (6.73)

where [J] is the vehicle Jacobian matrix given by

oP
[J] = -_--_-]g=g0 (6.74)

The Jacobian matrix is obtained numerically by sequential perturbation of each

control parameter in the control vector, generally about 5 percent of the current

value, which after calculation of blade response, blade loads, and hub loads, results

in an associated residual vector. The Jacobian matrix is then approximated as

[j] = F(0 + A0)-/b(t_)
(6.75)

where At_ are the control perturbations. This matrix is calculated using the initial

control settings to begin the coupled trim procedure, but may be recalculated using

the current control vector of any iteration desired. Recalculation of the Jacobian

is only desirable when the initial control settings are faulty as may be the case

when large twist deformations are experienced.

Rearrangement of Eqn. 6.73 gives the desired increment in the controls vector

as

A0, = -[JJF(0,) (6.76)

and the control vector is updated as

0,+1 = t}, + (1 - R)At_ (6.77)

where R is a damping factor used to maintain numerical stability and 0 < R < 1.

R is typically set to decay exponentially as the number of iterations increases. The

default value for the present formulation is

R = e-_ (6.78)

232



6.3.6 Converged Blade Response and Vehicle Trim

Convergence of the coupled trim solution is achieved when both the force residual

equations and the blade response equations are satisfied. Convergence of the blade

response is defined by the scalar sum of azimuthal blade tip deflections between

successive iterations which must be less than a specified tolerance:

• )5_,j=l(qi+l - qi
< q (6.79)

where N_, is the number of global temporal Gaussian points. Similarly, for the

force residual convergence, the magnitude of the force vector must be less than a

specified tolerance:

(6.80)
4=1

where n is the number of force residuals in the force residual vector for tile type

of trim scheme used.

A typical convergence tolerance for el is .005 which represent a 0.5 percent

change in the response magnitude between successive iterations. A typical value

for e2 is .0001.

6.3.7 Large Twist Deformations

Convergence problems may be experienced for blades where the elastic twist defor-

mation is substantial. Convergence is more sensitive to twist than to other blade

deformations because twist has a much more significant impact on the blade angle

of attack and aerodynamic loads. Examples of blade designs which might expe-

rience convergence problems are designs which are subject to large twist changes

such as torsionally-soft or extension-twist-coupled blades. Most convergence prob-

lems can be overcome with an accurate estimate of the final twist deformation

which can be determined by just a few iterations of the coupled trim procedure.
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The initial control estimates do not include blade elastic twist deformation, but

modifications to the trim procedure allow an estimate of the twist deformation to

be included in the initial controls analysis. In the present formulation, the twist

deformation is approximated by a linear distribution based on an input value for the

75-percent radial station, Czs. The twist deformation at any given radial position

X

is then written as

(6.81)

which is combined with the built-in twist in the rigid-blade analysis. The control

estimate will then include the twist estimate such that, in general, the collective

estimate 87s without twist included is reduced by an amount approximately equal

to _bvs when twist is included. However, the estimate is an improvement on the

simpler approximation (0_s),_,o = (Ors)o_d -- Crs because the rigid-blade analysis is

able to account for the change in twist all along the blade span which may have

an influence on the collective as welt as the other controls in the control vector.

The elastic blade coupled trim procedure generally begins with a zero defor-

mation vector. Without including the initial twist deformation, the Jacobian cal-

culated from the initial response will not reflect the twist approximation, and this

will adversely affect the coupled trim procedure. The twist approximation is thus

extended to the elastic blade trim by initializing the twist part of the deformation

Xi

vector as

(6.82)

where i represents the gaussian point and xi is the radial station associated with

the gauss point. This estimate may also be held fixed for a specified number of

iterations before being relaxed, thereby soothing the elastic blade bending response

which tends to move erratically when large twist deformations are encountered.

The second modification for improving convergence in the coupled trim proce-

dure, as discussed previously, is recalculation of the Jacobian at specified intervals
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of iterations. Using the initial twist estimate in conjunction with the recalculation

of the Jacobian should enable convergence to be reached for any realistic blade

design, vehicle configuration, and flight condition. A typical scenario for obtaining

convergence of a difficult problem is described in the following paragraph.

Assume an extension-twist-coupled blade with 40 degrees of linear nose-down

twist is modeled on a tiltrotor configuration in hover. The initial control estimate

gives 6T5 at about 13 degrees which is an angle of attack of about 7 degrees because

the inflow angle is calculated at 6 degrees. The initial control estimate is a very

good one if the blade is torsionally rigid, but the elastic twist for this blade is

high, say 15 degrees nose-up at the 75-percent radial station (¢75 = 15°) • The

elastic coupled trim procedure is begun and the Jacobian is calculated. On the

second iteration after calculation of the Jacobian, the large twist gives a negative

angle of attack at the .75R station. The force residual shows that the total pitch

angle here is too high, and, with the Jacobian, attempts to decrease the collective

to account for this. However, the control step size on the first few iterations is

highly damped. The controls cannot move as quickly as the deformations, so large

positive thrust is produced. On subsequent iterations, the coupled trim eventually

overcompensates for the large positive thrust with a very large negative step size

in the collective setting, which results in a large negative thrust. The coupled

trim begins to oscillate between increasingly larger values of positive and negative

thrust, becoming unstable rapidly, and further computation is stopped. During

the first few iterations, however, the elastic twist is shown to be about 12 degrees

at .75R which seems reasonable for the blade considered. This twist is then used

as input to linearly estimate the controls, and the procedure is begun again. This

time the control estimate analysis predicts a collective setting of 1 degree because

it accounts for the 12 degrees of nose-up estimated elastic twist. The elastic blade

coupled trim also uses the twist estimate, and it is specified to keep the estimate
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as the actual twist deformation for the first three iterations after the Jacobianis

calculated. When the actual twist deformation is producedon the fourth iteration

of coupled trim, the blade responseis sufficiently convergedthat there are only

small changesin the blade responseand control vectors. Both begin to converge,

but the elastic twist eventuallymovesup to 15degreesat .75R. The forceresidual

changesas the twist deformation increasessuch that the natural position of the

collectivesettingshouldbe -1degree,but the stepsizeis alwaysa percentageof the

current control valueso it cannot crossover a zeropoint. The coupled trim must

bestoppedand restartedwith a largerestimatefor the elastic twist, say17degrees,

sothat the initial collectiveestimatehasa negativevalue. Now,convergencewill

be achieved.
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Figure 6.1: Rotor and airframe forces on a tiltrotor in free flight.
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Figure 6.2: Discretization of azimuth into time elements.
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Figure 6.3: Coupled trim procedure as modified for the present formulation.
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Nonuniform Inflow
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Figure 6.4: Uniform and nonuniform induced inflow distributions in hover for

blades with various twists.
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Chapter 7

Stability Analysis

This chapter addresses the procedures implemented for determination of tiltro-

tor stability characteristics. There are substantial modifications required to the

UMARC formulations regarding the assembly of the global system matrices, but

the stability analyses themselves are relatively unchanged. This chapter also dis-

cusses the importance of the engine drive train dynamics on tiltrotor system sta-

bility, and shows how these effects are incorporated in the present formulation.

Dynamic inflow, which has been considered in UMARC formulations, is not in-

cluded.

The UMARC formulations consider both a linearized eigenanalysis and a tran-

sient response analysis for determination of system stability. In the linearized

eigenanalysis, the nonlinear differential equations are derived for the perturbed

motion of the system, and are then linearized about the deflected trim position.

An eigenvalue analysis is performed on the homogeneous form of these equations

to determine the system stability characteristics. For periodic equations, a Flo-

quet transition matrix or a constant-coefficient approximation is used to obtain

the system equations in suitable form for the eigenanalysis. Advantages of the lin-

earized eigenanalysis are that damping of high-frequency modes can be accurately

estimated, the effects of rigid-body motions can be included in the stability cal-
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culations, and the method is computationally efficient. The disadvantage is that

highly nonlinear effects such as flow separation and dynamic stall are lost in the

calculations. These effects are captured in the transient response analysis in which

the blade motion is integrated over time. After the transient response is calculated,

a damping estimation method such as "moving block" is then used to estimate the

damping of the system modes. Disadvantages of this method are loss of accuracy

in the determination of damping of high-frequency and high-damping modes, sen-

sitivity of system nonlinearities to control perturbations, and high computational

time.

Application of linearized eigenanalysis appears suitable for most of the practi-

cal range of tiltrotor dynamics problems since the most common form of tiltrotor

instability (whirl flutter) occurs in high-speed axial flight. For this flight condition,

the equations of motion have constant coefficients. Thus, there is no need to con-

sider Floquet theory or use constant coefficient approximations for most cases. For

the tiltrotor configuration, the isolated blade stability is not important because the

hub motion is coupled with the elastic wing modes, and has a large influence on the

system damping. The present formulation considers only linearized eigenanalysis

in the fixed frame.

7.1 Assembly of the System Equations

Assembly of the system equations is based on application of Hamilton's principle

given by Eqns. 4.35-4.38. The system matrices defined in Chapters 4 and 5 are

derived by assuming the degrees of freedom (state variables) _, xh' and q_ are small

perturbations about the deflected trim position:

= (4)0+A_ (7.1)

&h = (&h)0+ A&h (7.2)
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t} = (q_)o + A_ (7.3)

where subscript 0 indicates the steady values and A indicates a small perturbation.

The variational quantities are then given by:

&_ = (5(_)0 + (SA(_ (7.4)

_h = _(_h)O+_A_h (7.5)

6{ = _(q_)0+_A_ (7.6)

but for the converged trim solution the variation of the steady value must be zero

by definition so that

6_ = 5A_ (7.7)

_f_h = _A}h (7.8)

5_ = 5A_ (7.9)

The work and energies associated with the perturbation motion can also be

written as a sum of steady and perturbation quantities which gives the following

form for the variation of Hamilton's principle:

t2(SUo_STo-SWo)dt + f2(SAUo-_iATo-_AWo)dt =0 (7.10)
I Jtl

However, the steady state trim solutionsatisfiesthe equation

fti2(SUo - 5To - riWo) dt = 0 (7.11)

so the energy variation corresponding to the perturbation motion becomes:

f,12(_iAUo - ,5ATo - _5AWo) dt : 0 (7.12)

Thus, the perturbation symbol may be dropped from the equations with the un-

derstanding that all the state variables represent perturbation quantities after the

trim solution is reached.
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Following the application of Hamilton's principle, the blade, hub, and wing

matricesaredefinedin Chapters4 and 5. Theseelementmatricesare classifiedas

follows:

[Mbb]

[Cbb]

[Kbb]

[Fb]

[Mb_]

[ebb]

[K_h]

[Mhb]

[Ch_]

[K,_]

[Mhh]

[Chh]

[ghh]

[Mw_]

[C_]

[K_]

Blade-blade structural mass matrix

Blade-blade structural damping matrix

Blade-blade structural stiffness matrix

Blade structural load vector with nonlinear terms

Blade-hub structural mass matrix

Blade-hub structural damping matrix

Blade-hub structural stiffness matrix

Hub-blade structural mass matrix

Hub-blade structural damping matrix

Hub-blade structural stiffness matrix

Hub-hub structural mass matrix

Hub-hub structural damping matrix

Hub-hub structural stiffness matrix

Wing structural mass matrix

Wing structural damping matrix

Wing structural stiffness matrix

Blade-blade aerodynamic mass matrix

Blade-blade aerodynamic damping matrix

Blade-blade aerodynamic stiffness matrix

Blade aerodynamic load vector

Blade-hub aerodynamic mass matrix
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Blade-hubaerodynamicdamping matrix

Blade-hubaerodynamicstiffnessmatrix

Hub-bladeaerodynamicmassmatrix

Hub-bladeaerodynamicdamping matrix

Hub-bladeaerodynamicstiffnessmatrix

Hub-hub aerodynamicdamping matrix

Hub-hub aerodynamicstiffnessmatrix

Wing aerodynamicmassmatrix

Wing aerodynamicdamping matrix

Wing aerodynamicstiffnessmatrix

Blade-bladenonlinear aerodynamicdamping matrix

Blade-bladenonlinearaerodynamicstiffnessmatrix

Blade-hubnonlinearaerodynamicdamping matrix

Blade-hubnonlinearaerodynamicstiffnessmatrix

Hub-bladenonlinearaerodynamicdamping matrix

Hub-bladenonlinear aerodynamicstiffnessmatrix

Hub-hub nonlinear aerodynamicdamping matrix

Hub-hub nonlinear aerodynamicstiffnessmatrix

The blade part of the matrices correspondsto the 15 discrete blade degreesof

freedom_, the hub part of the matricescorrespondsto the 8hub degreesof freedom

kh, and the wing part of the matricescorrespondsto the 15discretewing degrees

of freedom _,o. The terms of thesematrices are as yet not integrated over the

element length. Also, the blade equations are derived in a rotating coordinate

systemwhile the hub and wing equationsarederivedin a fixed coordinate system.

This differenceneedsto be resolvedbeforea stability solution canbe performed.
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7.1.1 Element Integration

Calculation of the element matrices requires integration over the length of the beam

element and is performed numerically. A 6-point Gauss quadrature procedure is

used in UMARC (and also in the present analysis) which gives the integration of

a typical term in the element matrices as:

6

--Jo1F(s)ds = _ w:F(sj) (7.13)
j=l

where wj is the weighting factor at the jth quadrature point and sj is the posi-

tion of the jth quadrature point. A 6-point formula is used because it offers the

best compromise between accuracy and numerical efficiency for the integration of

polynomials associated with the present formulation.

The numerical integration technique is highly compatible with tiltrotor blades

because these blades typically have large twists. Since the beam properties are

defined in the local cross-section reference frame, but are converted to an untwisted

reference frame, integration of an element with large twist can introduce significant

errors, particularly if the beam properties and twist vary along the element span.

A linear interpolation scheme has been introduced in the present formulation to

account for beam property and twist variations within an element. Properties for

the beam elements may be designated at each node point. During the Gaussian

integration, the properties at each of the 6 Gauss point locations are estimated as

F(_j) = F(O) + _(F(t) - F(O)) (7.14)

where F(0) is a typical beam property at the first node point, F(1) is a typical

beam property at the second node point, and l is the element length. In previous

UMARC formulations, a beam property is assumed constant over the element

length, and if nonlinear twist is used, the twist is also assumed constant over the

element length.
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Followingintegration, the structural, aerodynamic,and nonlinearaerodynamic

contributions of the commonmatrix typesaresummedto producethe total element

matrices. The total elementmatrices arenow designatedby a superscript e as:

[Ch]

[K_b]

[Y;]

[M;h]

[Ch]

[Kh]

[Mh]

[Ch]

[Kh]

[Mh]

[Chl

[Kh]

[M:d

IgOr]

Blade-blade total element mass matrix

Blade-blade total element damping matrix

Blade-blade total element stiffness matrix

Blade total load vector with nonlinear terms

Blade-hub total element mass matrix

Blade-hub total element damping matrix

Blade-hub total element stiffness matrix

Hub-blade total element mass matrix

Hub-blade total element damping matrix

Hub-blade total element stiffness matrix

Hub-hub total element mass matrix

Hub-hub total element damping matrix

Hub-hub total element stiffness matrix

Wing total element mass matrix

Wing total element damping matrix

Wing total element stiffness matrix

7.1.2 Assembly of the Element Matrices

Assembly of the elements involves conversion from local element nodes and lo-

cal degrees of freedom to global nodes and global degrees of freedom. The blade

elements are assembled end-to-end with the second local node of one element cor-

responding to the first local node of the following element. Each overlap defines
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one global node. Following the approach of past UMARC formulations, the blade

elements are assembled from the blade tip to the root so that global node 1 is at

the blade tip and global node N, + 1 is at the center of rotation. The assembly

process associated with conversion of the blade element degrees of freedom to the

blade global degrees of freedom is a standard finite element technique described in

several references (Ref. 89 for example). This process gives the global blade-blade,

blade-hub, hub-blade, and hub-hub matrices which are listed as:

[MsB] Blade-blade global mass matrix

[CBB] Blade-blade global damping matrix

[KBB] Blade-blade global stiffness matrix

[FB] Blade global load vector with nonlinear terms

[MBH] Blade-hub global mass matrix

[CBH] Blade-hub global damping matrix

[KBH] Blade-hub global stiffness matrix

[MHB] Hub-blade global mass matrix

[CHB] Hub-blade global damping matrix

[KHB] Hub-blade global stiffness matrix

[MHH] Hub-hub global mass matrix

[CHH ] Hub-hub global damping matrix

[KHH] Hub-hub global stiffness matrix

The same procedure is repeated for the wing element matrices to obtain the global

wing matrices:

[Mww]

[Cww]

[Kww]

Wing global mass matrix

Wing global damping matrix

Wing global stiffness matrix
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The global bladedisplacementvector contains9 x (N, + 1) displacementsbefore

application of boundary conditions,and may be written as:

I l I I

{_1 vl Vl wl Wl ¢1 u_ ¢5 u3 _4 v_ v2 =_ =2 ¢3

! t

"''U(3N,+I) VINe+l) _)(Ne+l) W(Ne+I) W(Ne+I) _)(2Ne+l)} (7.15)

A similar global displacement vector is obtained for the wing qw, but the degrees

of freedom correspond to the number of elements selected for the wing which may

be different from the number of elements selected for the blade. The global hub

displacement vector 5:H is the same as the element displacement vector Xh.

Application of the appropriate boundary conditions reduces the size of the

displacement vector and the appropriate rows and columns of the system matrices

are eliminated. For a hingeless rotor system, the blade is cantilevered at the root

so all six kinematic variables associated with node N_ + 1 are assumed to be zero.

As hinges are incorporated into the model, as for an articulated rotor system, the

appropriate constraints are relaxed. The wing is assumed to be cantilevered at the

root, so all six degrees of freedom there are constrained.

Following assembly, application of boundary conditions, and summation over

Nb blades, the system equations may be written in matrix form as:

T
¢

(MBB)I

0

0

_ (MHB)I

0 "'" 0 (MBH)I

(MBB)2 "'" 0 (MBH)2

: ".. : :

0 "'" (MBB)Nb (MBH)Nb

(MHB)2 "'" (MHB)Nb MHH
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+

+

(Css),

0

0

(Cns),

(KBB),

0

0

(KHB),

(FB),

(Fs)_

(Fs)N_

0

° "° 0

(cBs)2 ... o
:

o ... (cBs)_

(CHs)_ ... (cns)N_

0 ... 0

(Ks.)2 ... 0
:

o ... (Kss)N_

(K.s)2 ".. (KHs)N_

(C..h [(Cs.):

: %

(Cs.)m

CHH

(KBH),

(K..):

!

(KBH)NbKHItJ

(_,),

XH

(as),

(0.)_

}H

(7.16)

The nonlinear contributions to the force vectors are linearized using a Taylor Series

expansion for each of the/Vb blades:

OFs . OFs_.
FB = _qs qB + SiIO:--qB

(7.17)

and the system equations can then be expressed as:

Mnn MRH

MHR MHH
qR}+

+

CRR

CHR

KRR
I(HR

_H

CH_

KRH

KHH

_H

= 0 (7.18)
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where

MRR

(MBB)I 0

0 (MBB)2

:

0 0

°°.

°

.•°

0

0

(MBB)Nb

(7.19)

CRR --

(CBB -- OFB_OgIB )1 0 "'" 0

0 (CBB - a_La_OqBj2 "'" 0

• : ".. •

0 0 ." (Css- aF__
O_IB )Nb

(7.20)

KRR =

(KBB OFBS 0
-- OqB )1

o_ga_
0 (Kss - Oq B )2

:

• "" 0

° * ° 0

• °
°

o

• .. (Kss- °-_v )N_
OqB

(7.21)

0 0

qR = ((qB)l T (o.)T ... (_s)Tb} (7.22)

The wing system equations are not yet included in the system. The hub and rotor

system equations given by Eqn. 7.18 are next transformed into normal mode space

before the wing system equations are added in to complete the system.

7.1.3 Normal Mode Transformation

Due to the size of the finite element matrices associated with Nb elastic blades, the

computational effort is reduced by transforming the blade equations into normal

mode space. This typically reduces the number of degrees of freedom from about

40-100 to about 6-8 per blade. The normal mode transformation of the present

formulation is exactly the same as for past UMARC formulations• Some of the

details of this process are given in this section for completeness.

After a trimmed solution is obtained, the deformed blade mode shapes are cal-

culated. These modes are obtained using an eigenanalysis on the blade structural
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systemusingthe meandeflectedtrim position over one rotor revolution, and there-

fore include blade couplings associated with the nonlinear structural terms. The

resulting modes are then used to transform the rotor displacement vector into the

modal space:

/  BI/i•= = OR= = [¢]_R
i ... "

(60S)Nb ¢ (@S)Nb

(7.23)

The blade-related matrices are then transformed into modal space as:

_R _:I_H JR +
Jf/IHn MHH XH CHn

+

Cnn _n

KHH XH

= 0 (7.24)

where the transformations are given by:

/_RR

lt:I_.

_/_HR

eRR

CRH

_[RR

I_RH

_[ H R

= [¢]T Mm_ [¢]

= [¢]T MnH

= MHn [_]

= [¢]r ear [¢]

= [¢]r Can

= cnR [¢1

= [¢]rKRR[¢]

= [(I)] T KRH

= KHR[¢]

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)
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7.1.4 Addition of the Wing Equations

Modal reduction of the blade-hub system equations does not affect the hub degrees

of freedom as shown by Eqn. 7.24. The discrete wing degrees of freedom at the

wing tip and six of the eight hub degrees of freedom are the same as discussed in

Chapter 4. The relationship between the common wing and hub degrees of freedom

is given by:

Wing dof Hub dof

Ul = --Yh (7.34)

vl = Xh (7.35)

I

Vl = Ch (7.36)

wl = Zh (7.37)

Wl --¢h (7.38)

¢1 = --ah (7.39)

where ul, vl,v'l, Wl, Wtl, and ¢1 represent the discrete degrees of freedom at the

wing tip. Using a procedure analogous to the summation of the element matri-

ces, the wing system matrices can be summed with the hub-related matrices to

produce a new set of coupled hub-wing matrices. The procedure is represented

mathematically as:

NIww = MHH _ Mww (7.40)

Cww = CHH_Cww (7.41)

[(ww = KHn_]_ Kww (7.42)

_w = _as (7.43)

_w
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where_ is usedto indicate the procedureof adding finite elementmatrices with

commonglobal degreesof freedom.The newWW (with bar) matrices contain two

more rows and columns than the old WW matrices, and these rows and columns

correspond to Bee and _as from the HH matrices. The rest of the HH matrices

(which correspond to the remaining 6 hub degrees of freedom) are added into the

first six rows and columns of the old WW matrix (which correspond to the wing tip

degrees of freedom). Rows and/or columns of the HH matrices are first rearranged

to align with the wing tip discrete degrees of freedom to facilitate the assembly

process. The hub-blade and blade-hub matrices are modified as:

IVIRH _ I_RW (7.44)

/I_/HR ---* /_/WR (7.45)

/_/RH --* -_/RW (7.46)

-_/HR -* /14rwR (7.47)

/lY/RH -"* /(/RW (7.48)

-]f/IH n _ ._l w n (7.49)

where ---, is used to indicate a transformation of rows, columns, and signs such

that the hub-related matrices correspond to the wing matrices and are consistent

with Eqns. 7.34-7.39. The new matrices are filled with rows and columns of zeros

where there is no coupling between the rotor system and the wing degrees of

freedom beyond those associated with the wing tip. The resulting coupled rotor-

wing system equations are given by:

lfiwR Mww CwR Cww

+ = 0 (7.50)
Rwn Kww _w
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7.1.5 Engine Drive Train Dynamics

The importance of modeling the tiltrotor engine drive train dynamics accurately

in high-speed axial flight mode is discussed in Ref. 35. It is concluded in this

reference that the dynamic behavior of a typical system with engine, transmission,

and governor modeled is much like that of a windmilling rotor system, with some

influence of the engine inertia and damping. The interconnect shaft is shown to

have a significant influence on the antisymmetric tiltrotor dynamics, but these

modes are not considered in the present formulation. Based on the results of

Ref. 35, a windmilling rotor system is employed as the drive train model in the

present formulation, and is used for stability analysis of the tiltrotor in axial flight.

For a windmilling rotor, a rotational degree of freedom about the shaft is in-

troduced, and is unconstrained with respect to the wing. In axial flight, the hub

degree of freedom Cn corresponds to a rotation about the shaft, and is thus used

to model the windmilling rotor system. The assembly process described in the

above section is modified so that Ch is not constrained to the corresponding wing

tip motion. This is tantamount to replicating the wing-assembly procedure with 5

hub degrees of freedom instead of 6, where the hub degree of freedom Ch no longer

corresponds to the wing tip degree of freedom w_. The result is one additional

global degree of freedom in the wing displacement vector:

e

Ch

&w = ' (7.51)

i _cs

There is also one additional row and column in each of the WW system matrices,

one additional column in the RW matrices, and one additional row in the WR

system matrices of Eqn. 7.50.

A more advanced engine drive train model may now be obtained by including
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the appropriate inertia, damping, and stiffness properties associated with Ch- This

model could itself have several degrees of freedom Which are coupled to the rotor

system, through Ch, using an assembly process analogous to that used to couple the

wing and rotor systems. Such a model is not considered in the present formulation.

7.2 Stability Analysis Procedure

The stability analysis procedure from this point on is unmodified from previous

UMARC formulations except for the much larger size of the global system equa-

tions due to the elastic wing model. The system equations are next transformed

into first order form for efficient stability eigenanalysis. Here, a system state vector

Y is defined as:

1_ =_ (7.52)

P_

xW

^

Pn

^

xw

The system equations are then written in first order form as:

+

eRR

Cwn

I

0

_flm_ 2f4nw 0 0

MwR Mww 0 0

0 0 I 0

0 0 0 I

CRW I(RR [(RW

Cww I(WR [(WW

0 0 0

I 0 0

Y

= 0 (7.53)
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Multiplication of Eqn. 7.53by the matrix

-1

_4wR _'lww ] 0 0

[oo][,o]0 0 0 I

gives the desired first order form of the system equations as

(7.54)

Y = [A(¢, Y0)]l _ (7.55)

The stability matrix/i is shown to be a function of both the azimuth location ¢

and the trim solution vector ]Y0. At this point the blade-related parts of the system

equations are formulated in a rotating frame. Since the wing-related parts of the

system equations are formulated in a fixed frame, it is advantageous to transform

the blade-related parts also into a fixed frame.

7.2.1 Fixed Coordinate Transformation

The fixed coordinate transformation implemented in past UMARC formulations

as well as the present formulation involves two steps: transformation of the blade-

related rotating frame coordinates to fixed coordinates and transformation of the

blade equations into fixed frame equations. The blade-related rotating frame co-

ordinates are related to the fixed frame coordinates _ as

/iR = [Ab]_ (7.56)

where

(7.57)
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and m is the number of modes used to represent the blade response. Each ele-

ment in the above column vector represents another column vector of fixed frame

coordinates for the kth modal displacement of the blade:

G0

_2c

_(k) =, (7.58)

_n12

Each _(*) has length Nb so that the length of _ is mNb. The transformation matrix

Ab is written as

lAb]=

ab 0 ... 0

0 ab ... 0

0 0 "'. 0

0 0 ... ab

(7.59)

where each column represents a blade mode considered for the stability analysis

and

{1,cosCb,...,cos(nOb),sinOb,...,sin(nOb),(--1) b} ifNbeven
ab = (7.60)

{1,cosCb,...,cos(nCb),sin ¢b,... ,sin(riCh)} if Nb odd

{ Nb-2 ifNbeven

2
. = (7.61)

if Nb odd
2

Because [Ab] is a function of time, the derivatives of the modal displacement vectors

are written as:

= + +

(7.62)

(7.63)
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The bladeequations (systemequations which are coefficientsof _ib)are then

transformed into the fixed frameusing the following operations:

1 Nb

E (Eqn)
rn----I

2 Nb

y_ (Eqn) cos(kern)
m=l

2 Nb

_ (Eqn) sin(k¢,,,)
rn----1

1 Nb

_] (Eqn)(-1 )m
rn=|

(7.64)

(7.65)

(7.66)

(7.67)

for each of the k blades.

After substitution of the fixed frame transformations given by Eqns. 7.62- 7.63

and the fixed frame equation transformations given by Eqns. 7.64-7.67, the system

equations given by Eqn. 7.50 then become

MwRI £1ww _ +[ RjRs Rjw]{}CwR, Cww _w

/_'wn, /?ww _w
= 0 (7.68)

where the following definitions for the new fixed-frame blade-related matrices ap-

ply:

1

1

Cnlnl - Nb

1

A'RIRI = N_

1

Y%w =

1

Cnjw - Nb

Nb

[Hb][£lnnl[Abl (7.69)
m_l

Nb

- -- _ [Hb](2[_lnn][Bb] + [Cnn][Ab]) (7.70)
rn= l

Nb

_[Hb]([](lnn][Cb] + [Cnn][Bb] + [[(nn][Ab]) (7.71)
rn= l

Nb

__, [Hbl[2flnw] (7.72)
rn=l

Nb

- -- E [Hb][Cnw] (7.73)
rn----1
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KRIw

]VIwR I

CwR!

•I4_WR!

1 Nb

m=l

1 _

= N _ [._wRl[&]
rn=l

1 Nb

-- N _ (2[M_R][B,]+ [Cw.][&l)
m=l

1 g_

= N _ ([MwR][Cb]+ [O.,RI[B_]+ [[rw.l[A_])

(7.74)

(7.75)

(7.76)

(7.77)

and

[Hb]=

hb

°

hb

(7.78)

which is a raNt, x m matrix where m is the number of modes and

h b -

1

2 cos(_b)

2 cos(2_bb)

2 cos(n_b)

2 sin(_bb)

2 sin(2¢b)

2 sin(nCb)

(-1) b

(7.79)

which has length Nb. This system of equations may also be converted to first order

form using the procedure described in the previous section. The resulting system

is then written in first order form as

Y! = [As(¢)]_" I (7.80)

where [AI(¢)] is the fixed-frame stability matrix and I_'! is the fixed-frame vector
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of state variables:

XW

]_! =_ _ (7.81)

_w
k

If the rotor system is aligned for axial or hover flight, then the matrix [AI] is not

a function of _b, and Eqn. 7.80 may be solved using standard eigenvalue analy-

sis techniques. Solution gives the damping and frequencies of the rotor and wing

modes associated with the system. If the tiltrotor is in conversion mode or heli-

copter forward flight mode then the matrix [AI] is a function of ¢, and steps must

be taken to account for the periodicity of the system before a solution may be

obtained.

7.2.2 Floquet Theory

The linearized first order system given by Eqn. 7.80 may contain periodic terms

because of the azimuthal change in aerodynamic forces associated with forward

flight and/or application of cyclic pitch controls. Stability characteristics of a lin-

ear periodic system may be determined using Floquet theory. Formulations of

Floquet theory for finite element based stability analysis are presented in Refs. 67

and 88, and these derivations represent the formulations used in the current anal-

ysis. Details of the basic relations developed in these formulations are presented

in Ref. 79, and an outline of the procedure is presented in this section.

The system of equations including wing motion is placed in first order form as

1[_= [A]]_ (7.82)

The solution to this system must be expressible as a linear combination of the

state variables at time _b0 such that

Y(¢) = [¢(¢,¢o)]Y(_0) (7.83)
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wherethe _ matrix is known asthe state transition matrix, and by definition:

[0(¢0, _bo)]= [I1 (7.84)

Substitution of Eqn. 7.82 into Eqn. 7.83gives

[_] = [A][_] (7.85)

The rotorcraft equations are periodic with a period of 27r so that

[A(¢ -t- 27r)] = [A(¢)] (7.86)

and the transition matrix may be expressed as

[_(¢, ¢o)] = [P(¢)]e [B(_-¢°)] (7.87)

where IF] is a periodic matrix of period 2r and [P(¢0)] = [I]. The exponential

decay or growth of the system solution is shown to depend only on the matrix [B].

The discrete Floquet transition matrix is defined as:

[Q] = [¢(_bo + 2_', ¢o)] (7.88)

which may be written as

[Q] = e2-[B] (7.89)

Let [A] be the eigenvalue matrix (Jordan form) of [B], and [S] be the corresponding

modalmatrix. Then [B]= [S][A][S]-'and

[Q]= e2"_Bl= [S]d't^J[S]-' (7.90)

Thus, IS] is also the modal matrix of [Q], and the eigenvalue matrix associated

with the Floquet transition matrix is

[O] = e 2_[^] (7.91)

1 ln[O] (7.92)[A]=

or
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The system is unstable if the real part of any eigenvalueis greater then zero

(ne(A,) > 0).

The Floquet transition matrix Q can be computed by integrating Eqn. 7.85

over one rotor revolution starting with the initial conditions given by Eqn. 7.84.

The eigenvalues of [B] determine the system stability, but these eigenvalues are

shown to be the same as the eigenvalues of the Floquet transition matrix [Q]:

Ok = Pc(Ok) + Jim(Ok) = e2"("k+_k) (7.93)

The Floquet stability eigenvalues are thus given by the kth eigenvalue of [Q] as

1 In x/P, e2(0k) + Im2(Ok) (7.94)ok = 2--7

1 (Ira(Ok))oak = 2--Ttan-' k_----_k ) +nl};n =0,1,2,... (7.95)

where ak and oak are the decay rate and Floquet frequency of the kth mode,

respectively. The frequency is shown to be multivalued; the sum of a principle

part and an integer multiple of the rotor rotational velocity. Determination of the

frequency value which corresponds to the physical system requires additional effort.

One approach is to use results of a constant coefficient approximation (discussed

in next section) to determine this frequency.

It should be noted that the stability of a tiltrotor system must be assessed

in a fixed frame because of the large influence of the wing motion on the rotor

system. Application of the Floquet theory in the fixed frame increases the size

of the transition matrix by a factor of N_ since all blades must be considered

simultaneously.

7.2.3 Constant Coefficient Approximation

Much of the derivations presented in this research has assumed that the system

modeled is moderately nonlinear. This assumption reduces the size and complexity
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of the systemequations,and allowsthe basicqualitiesof the nonlinearsystemto be

capturedin the linear solution. In an analogousmanner,it maybeassumedthat in

certain flight modesthat the systemis periodic, but not highly periodic. The basic

qualities of the periodicity maythen becapturedby averagingthe systemstability

matrix over one rotor revolution, and the resulting system is greatly simplified

as the stability matrix becomesa matrix of constant terms only. The constant

coefficient approximation to the stability matrix is given by:

1]o2 [Ale] = _r [AI] de

and the new system of equations given by

g = [Aj I ?

(7.96)

(7.97)

may be solved using standard eigenvalue analysis.

The constant coefficient approximation generally gives an accurate representa-

tion of the system stability of helicopters for advance ratios under 0.3. For tiltrotor

application, the constant coefficient approximation should be accurate over most

of the flight envelope because conversion to an axial flight mode occurs at advance

ratios less than 0.3. Once in axial flight, the periodicity disappears due to the

symmetry of the rotor with respect to the oncoming flow.

The advantage of the constant coefficient approximation compared to Floquet

theory is more than mere computational efficiency. The nature of Floquet theory

is such that the frequencies of the Floquet eigenvalues do not represent the physi-

cal frequencies of the system modes. It is, therefore, very difficult to identify the

mode which is associated with the damping part of the eigenvalue. The constant

coefficient approximation aids in this process (even in flight modes where the ap-

proximation is poor) since the frequencies do match the frequencies of the physical

system.
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Chapter 8

Results and Discussion

This chapter addresses results obtained using the elastic-blade tiltrotor analysis

as developed in Chapters 4 - 7. This chapter can de divided into three major

sections. The first section presents correlations of the present analysis with results

from flight tests and other analyses as reported in the open literature. Correlation

efforts include controls, performance predictions in hover and cruise flights, fre-

quency and damping predictions of wing and rotor modes in airplane mode, and

vibratory bending moments in conversion mode. The second section presents an

investigation of bending-twist-coupled rotor blades designed to expand the tiltro-

tor whirl flutter boundaries. Here, the adverse pitch-lag dynamics associated with

rotor precone are shown to be negated by the elastic bending-twist-coupled rotor

blade, thereby improving tiltrotor stability. The third section presents an investiga-

tion of extension-twist-coupled rotor blades designed to improve the aerodynamic

performance of tiltrotors in hover and cruise flight modes. Here, large amounts of

elastic twist are used to obtain an improved twist distribution for the hover flight

mode while maintaining an optimum twist distribution in cruise mode. The elas-

tic twist in hover is different from cruise because of the variation in rotor speeds

between the helicopter and airplane flight modes.
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8.1 Baseline Design

The rotor and wing configuration used for validation of the present analysis, and

as a baseline for performance and stability comparisons of elastically-coupled blade

designs, is the Bell-designed, full-scale, gimballed, stiff-inplane model as tested in

the NASA Ames 40- by 80-Foot Wind Tunnel [31]. Much of the data needed to

describe this system are reported in Chapter 2, Tables 2.1-2.3. Additional plots

describing the blade twist, elastic axis offsets, mass, and stiffness distributions are

shown in Figs. 8.1 - 8.6. This series of plots indicate, by a darkened symbol, the

values input for the endpoints of each of the five beam elements used to model

the blade. Linear interpolation was used to obtain the value of each parameter

at the six gauss points (used for numerical integration within each of the beam

elements) so it is appropriate to connect each darkened symbol with a straight

line. It should be noted that the data shown in these plots are an approximation

of the distributions illustrated in reference 31, conformed to the spanwise node

point locations of the present model. The baseline rotor system also has positive

pitch-flap coupling with 63 = -22.5 ° and a rotor precone of 2.5 °. Plots illustrating

the wing elastic axis offsets, mass, and stiffness distributions are shown in Figs. 8.7

- 8.9. Linear interpolation is not used for the wing because there is little variation

of the spanwise properties, so the parameter values in these plots are shown to be

constant within each beam element.

8.2 Validation

The objective of this section is to build confidence in the present elastic-blade

tiltrotor analysis by showing an acceptable level of agreement with other analyses

as well as experimental results. The capabilities of the present tiltrotor analysis

extends to all free-flight modes of operation for performance and loads calculations,
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but only to a coupled cantilevered wing and rotor system for stability calculations.

The correlation efforts of the present section Will address all of these predictive

capabilities. An important note for this section is that the definition of the pylon

angle is changed to be consistant with past definitions. Here, the pylon angle at

zero degrees designates airplane mode while the pylon angle at 90 degrees des-

ignates helicopter mode. Recall that the original formulation uses an opposite

definition for the pylon angle to be consistant with the helicopter definition of

rotor shaft tilt.

8.2.1 Blade Frequencies

The bending frequencies and mode shapes of the baseline elastic rotor blade

trimmed at V/fiR = 0.7 are shown in Fig. 8.10. The left side of the figure shows

the results reported in reference 31 while the right side shows the results ob-

tained with the present analysis. As shown, the rotor system trims to about the

same 0_5 in each analysis (1.3% difference), and the frequencies of the first three

predominantly-bending modes are in good agreement. The analysis of reference 31

considers only uncoupled torsion, so there is no torsion participation in the bend-

ing mode shapes (shown on the right side of the figure) which is not the case with

the present analysis.

The analysis of reference 31 considers a rigid pitch motion uncoupled from the

elastic torsion modes, and the elastic torsion motion is uncoupled from the blade

bending motion as well. A rigid-body torsion mode may be created in the present

analysis by using a torsion spring at the blade root. However, the elastic torsional

stiffness of the beam elements must be much greater than the torsion spring or else

the rigid-body motion will disappear and couple with the first-elastic mode. As

shown in Fig. 8.11, the frequency of the rigid pitch and first elastic modes are very

close, so they will not both exist in the present torsionally-coupled analysis or in
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the physical system.The rigid-body motion is not consideredin the baselinemodel

of the presentanalysisbecausethis mode cannot in reality be decoupledfrom the

elastic motion. Further, an objective of this chapter is to investigate potential

useof elastic blade couplings (bending-twist, extension-twist) which requires an

accurate model of the blade torsional stiffness. It is, therefore, undesirableto

definea baselinedesignwith a rigid body torsion modethat canonly besimulated

by use of torsionally-stiff outboard beam elements. The baselinedesign for the

presentanalysiswill bebasedon the the torsion propertiesdefined in reference31

which producesthe torsion mode shapeand frequencyshownon the right sideof

Fig. 8.11. The elastic predominantly-torsion mode shapesand frequenciesare in

good agreementbetweenthe two analyses.

Predicited variations in the first three elastic blade frequencieswith velocity

(airplane-mode)are shownin Fig. 8.12 for both the the presentanalysisand the

analysisof reference31. The bendingstiffnessesare highly influencedby the for-

ward flight velocity becauselarge increasesin the collective setting are required

as the speedincreases,and this tends to place moreof the stiffer chord bending

stiffnessof the blade in the flap direction and tends to place more of the softer

flap bending stiffness of the blade in the lag direction. Thus, the first mode, which

is predominantly inplane, is shown to decrease in frequency as velocity increases,

and the second mode, which is predominantly a flap mode, is shown to increase

in frequency as velocity increases. The agreement in predictions between the two

analyses is shown to be good, with the higher modes in closer agreement than the

lower mode. The first bending modes are sensitive to the stiffness distributions

at the root end of the blade, but the stiffnesses of the baseline design varies dras-

tically at the root, so some discrepancy in modeling between the two analyses is

understandable.
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8.2.2 Stability in High-Speed Axial Flight

The discussion to this point has shown that the structural modeling of the tiltrotor

system in the present analysis is accurate. There is also an indication that the

basic aerodynamic modeling is satisfactory because of the agreement in collective

position (0_5) at the design cruise velocity. With these correlations, the dynamic

system stability in cruise flight with the elastic wing included is now compared.

The dynamics of the baseline wing and rotor system are illustrated in Fig. 8.13

which is a root locus plot comparing the results presented in reference 31 to those

of the present analysis. The range of velocity sweep in this plot is from 0 to 400

knots. The two flap modes fl-}-1 and/_-1 are the fixed-system eigenvalues for the

gimbal flap motion while the fl flap mode is the elastic coning motion. The fixed-

frame elastic flap modes are not shown since comparable results are not available

from reference 31. Modes with frequencies greater than 3/rev are also not shown.

The root locus plot shows good agreement for both the frequency and damping of

the modes, and similar movement as a result of the velocity sweep. The largest

discrepancy between the two analyses is that the low frequency lag mode (_-1) in

the present analysis couples strongly at low velocity with the wing beam mode as

those frequencies cross. This does not occur with the analysis of reference 31. A

closer examination of damping in the wing modes is shown in Figs. 8.14 and 8.15.

The plot of Fig. 8.14 shows predictions of the wing beam mode damping ratio as a

function of velocity (airplane mode), and includes full-scale experimental results as

reported in reference 31. Whirl flutter is predicted to occur at about 305 knots by

the analysis of reference 31, and at about 285 knots by the present analysis (about

7 percent difference). The damping ratio predictions are not in good agreement

over the entire velocity sweep because the damping ratio of the present analysis

has a spike which occurs when the _-1 mode couples with the wing beam mode.

This transfer of damping from the rotor lag motion to the wing beam mode when
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the frequencies of those modes cross agrees with results discussed previously in

Chapter 2. The wing beam mode damping ratio predictions of both analyses agree

satisfactorily with the experimental data. Damping of the wing chord and pitch

modes is shown as a function of velocity in Fig. 8.15. The damping predictions are

shown to agree well near the velocities at which these modes become unstable.

Further validation of the present analysis is offered by observing predictive

changes resulting from rotor parameter variations. An important parameter in

tiltrotor dynamics, which will be discussed in more detail in the following sections

of this chapter, is the rotor precone. As the rotor precone is lowered, the wing beam

bending mode damping is observed in Fig. 8.16 to increase at higher velocities (ex-

panding the flutter envelope). This trend is predicted by both of the analyses.

Variation of the blade torsional frequency also has a significant effect on tiltrotor

dynamics. The predicted trends for damping of the wing-beam mode with increase

in blade torsional frequency are shown in Fig. 8.17. Similar trends are observed

between predictions of the two analyses, but differences in the flutter velocity grow

with increases in the blade torsional stiffness. These differences are attributable to

the difference in modeling of the negative pitch-lag coupling associated with rotor

precone. In the analysis of reference 31, the pitch-lag coupling is estimated from

basic uncoupled-torsion dynamics and is modeled as a kinematic feedback param-

eter while, in the present analysis, the pitch-lag coupling is a natural occurance of

the elastic blade dynamics.

Because the torsional dynamics do have a significant effect on the wing damp-

ing, it is also necessary to investigate the effects of the torsional modes which differ

for the two baseline designs. Recall from previous discussion that the rigid body

mode used in the analysis of reference 31 must be omitted in the present analy-

sis in favor of an accurate modeling of the first elastic torsion blade mode. The

rigid-body mode can be simulated in the present analysis with a torsion spring
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and torsionally-stiff outboard beam sections. The difference in wing beam mode

damping associated with each torsion model, the rigid-pitch mode at 4.8/rev and

the first-elastic torsion mode at 5.7/rev, are shown in Fig. 8.18. The flutter ve-

locity associated with the rigid torsion case is shown to be about 5 percent lower

than that associated with the 1st elastic mode case.

8.2.3 Stability in Helicopter,

Modes

Conversion, and Airplane

The capabilities of the present analysis are assessed in helicopter, conversion, and

airplane modes using a cantilevered elastic wing and elastic blade rotor model.

Some additional input parameters for this model are illustrated in Fig. 8.19 which

were reported in reference 31.

The conversion corridor extends from aircraft velocities of about 90 knots to

about 170 knots. Up to 90 knots, the wing is near stall and the rotors provide

the necessary lift forces. The pylon orientation is at or near 90 degrees until the

lower conversion bounds is reached. The pylon then begins to rotate over, reaching

zero degrees by the time the aircraft reaches about 140 knots. Rotor rotation rate

is held constant during this period. Once the pylon is fully converted, the rotor

rotation speed is then dropped for high-speed cruise flight, which is generally 15 to

20 percent less then the hover rotor speed. There is a significant drop in the rotor

disc loading (CT/a) in moving from hover into airplane flight which has a significant

impact on the tiltrotor pitch dynamics as will be discussed later in this chapter.

The rotor model of the present analysis was trimmed to the disc loading illustrated

in Fig. 8.19 at several velocities. The rotor speed and pylon angles, also illustrated

in the figure, were input for each velocity point as well. Notice the abrupt change in

rotor rotation rate from 563 rpm in helicopter mode to 458 rpm in cruise mode over

a velocity range of about 20 knots. This change represents a rotor speed ratio of
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1.23 used in helicopter mode because the nondimensional input parameters for the

present rotor model were based on the cruise rotor speed. The trimmed collective,

as calculated by the present analysis and as reported in reference 31, are illustrated

as a function of velocity in Fig. 8.20, and the associated damping of the wing modes

are illustrated in Fig. 8.21. The data reported in reference 31 for these two plots are

based on a constant rotor speed (no rotor speed perturbation degree-of-freedom)

and no blade torsion degree-of-freedom. These assumptions have an influence on

the results, so the validity of comparing these particular results with the present

analysis calculations are suspect. However, as these are the only such results

available in helicopter and conversion mode operation for this tiltrotor model,

the comparison is attempted. The trimmed-collective settings shown in Fig. 8.20

are similar, with the present analysis generally predicting about 2 ° to 5 ° higher

collective. The higher collective predicted by the present analysis is attributed to

the torsional flexibility of that model. The wing modes damping trends shown in

Fig. 8.21 also show agreement considering the difference in analytical assumptions

used in obtaining these results.

8.2.4 Performance

The plots of Figs. 8.22 and 8.23 compare the performance predictions of the present

analysis to results of full-scale XV-15 flight tests for hover and cruise flights, re-

spectively. This comparison is valid because of the similarity of the present analysis

rotor model to the XV-15 rotor system. The test data are taken from reference 90.

The hover measurements are for an isolated XV-15 rotor system (no wing/body in-

terference effect). The present analysis is shown in Fig. 8.22 to agree well with the

test data for the hover figure of merit. Maximum error is about 4 percent which is

less than the variation of the test data. A Gessow-Meyers [91] inflow distribution

was used for the hover analysis. One might note that the figure of merit is generally
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muchhigher for a tiltrotor aircraft than for a conventionalrotorcraft becauseof the

high disc loading for a tiltrotor. Thus, the profile power is a smaller percentageof

the total power required to hover, sothe tiltrotor hover efficiencyis lesssensitive

to airfoil drag characteristics than conventionalhelicopters. Basedon the gross

designweight of the XV-15, the CT/a is .1145 at sea level. The predictions for

cruise propeller efficiency, shown in Fig. 8.23, also agree well with the test results

at low disc loadings, but the analysis slightly under-predicts the efficiency at high

disc loadings. The flight test data also reflect the large changes in velocity required

to achieve the various disc loadings. The predictions differ from the experimental

results by at most 8 percent which is also about the range in variation of the test

data. A typical operating point for the XV-15 is at CT/a = .05 [90].

8.2.5 Free-Flight Trim and Blade Loads

The final part of the validation section addresses capability of the analysis to

predict free-flight trim conditions and blade loads. As mentioned previously, the

present analysis does not yet have the capability of assessing stability for free-

flight because the fuselage degrees of freedom are not yet included in the stability

analysis. Additional parameters required to develop the free-flight model are given

in reference 13, and are listed in nondimensional form in table 8.1. The trim values

obtained with the present analysis are illustrated in Fig. 8.24. Here, the tiltrotor

in helicopter mode is shown to have a forward (nose-down) tilt of the fuselage and

forward tilt of the tip path plane (indicated by cyclic pitch 01s). Each of these

tilts increases with velocity to increase thrust in the forward-flight direction. The

collective pitch remains about the same because the wing loading decreases the

rotor thrust requirement about the same amount that the forward tilt increases

the rotor thrust requirement. As forward flight velocity continues to increase, the

pylon angle is lowered which greatly decreases the tilt of the fuselage and tip-path
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plane. The collective anglealso decreasesbecauseof the increasedflow through

the rotor with the increasedshaft tilt. As the inflow continues to increase, the

collective trend eventually reverses as larger collectives are required to maintain

a positive blade angle of attack on top of the larger inflow angles. This is true

in spite of the decreased thrust requirements from the rotor as the aircraft begins

to enter airplane flight mode. The horizontal tail controls of the aircraft become

dominant in maintaining pitch moment equilibrium, so cyclic is no longer required

to produce nose-down moment. However, the cyclic pitch in conversion mode must

increase with velocity because of the large edgewise flow through the rotor system.

Without cyclic control here, a large fuselage-pitch-up moment would be created

by the rotor system. As the pylon angle approaches zero degrees (airplane mode),

the cyclic pitch quickly falls to zero while the collective continues to increase with

the inflow. The fuselage pitch angle is shown to fall to about zero degrees as

the 3 degrees of wing incidence provides adequate lift in high speed flight. While

the control sequence described above seems plausible, no controls data from flight

tests could be found for comparison. The data shown previously in Fig. 8.20 for

the collective angle of a cantilevered wing and rotor system is closely related to

the collective trim controls of the free-flight analysis shown in Fig. 8.24.

Blade loads associated with the above trim conditions are illustrated in Fig. 8.25,

and are compared with flight test data of the XV-15 reported in reference 90. The

test data were obtained at r/R = 0.35 while the analysis shows calculations at

r/R = .40 because of modeling considerations. The trend of increasing vibratory

blade bending moment with velocity for helicopter and conversion modes are pre-

dicted by the present analysis. The actual values agree well for part of the lower

end of the velocity range considered at each pylon angle, but in general the an-

alytical bending moments increase at a faster rate than the experimental results.

This rate is decreased for the 30 ° pylon angle because the rotor speed decreases
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from 563 rpm to 458 rpm over the velocity range considered. In airplane mode

(0 ° pylon angle) the vibratory loads are much smaller because there is little or

no edgewise flow and cyclic controls are nearly zero. The predicted vibratory mo-

ments therefore approach zero. The larger flight test moments for this mode are

attributed to nonuniform airflow about the rotor azimuth such as may be caused by

wing/fuselage interference, gusts, or a non-straight-and-level flight path. It should

be noted that some of the analytical beam-bending results shown in Fig. 8.25 are

sensitive to the selection of the horizontal-tail incidence angle which may vary from

0 to 6 degrees. This angle was not precisely known for any particular flight condi-

tion. The curves associated with the conversion angles can be shifted by about 5

knots in either direction based on selection of the horizontal-tail incidence angle.

8.2.6 Summary of Validation Results

The results of the validation section show that the present analysis is reasonably

accurate in predictions of loads, performance, and stability for an elastic-blade,

gimballed, baseline tiltrotor. Important effects related to the elasticity of the blade,

such as the precone/torsional-stiffness influence were also shown to be accurately

predicted. Results from Chapter 3 showed that the elastic rotating beam model

was accurate in predictions of frequencies for elastically-coupled rotor blades. Com-

bining the results of the present chapter with those of Chapter 3, it is reasonable

to assume that the present analysis will accurately predict loads, performance, and

stability of tiltrotors with elastically-coupled rotor blades.

8.3 Bending-Twist-Coupled Rotor Blade

The present section focuses on means for increasing the velocity at which tiltrotor

whirl flutter occurs in high-speed airplane-mode flight. Many of the parameters
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which influence whirl flutter were examined in Chapter 2. This chapter did not,

however, consider the elasticity of the rotor blade which has been shown to greatly

influence tiltrotor stability characteristics. Important blade parameters which af-

fect stability are the rotor precone and blade torsional stiffness. The potential for

using a bending-twist-coupled rotor blade to offset the adverse precone effect is

examined in the present section.

8.3.1 Precone Effect

The baseline cantilevered wing and rotor system instability was shown in the previ-

ous section to be defined by the wing-beam-bending-mode damping. Instability of

this mode is shown in Fig. 8.16 to occur at higher velocities (expanding the flutter

envelope) as the rotor precone is lowered. Similarly, the instability of this mode

is shown in Fig. 8.17 to occur at higher velocities as the blade torsional stiffness

is increased. The cause of these trends is the coupling of the elastic blade lag and

pitch motions due to the rotor precone. This adverse effect is clearly explained in

reference 31, but must to some extent be repeated here for completeness.

Consider the rotor system in hover. Here the rotor disc loading is high, so

to offset large blade bending moments, rotor precone is introduced. As shown in

Fig. 8.26a, the precone gives a component of centrifugal force which opposes the

lift force. With ideal precone these forces balance, and there is no net bending

moment imposed on the rotor blade (at least for some desired spanwise location

on the blade). Now, consider the rotor system in airplane cruise. The disc loading

is shown in Fig. 8.19 to decrease by an order of magnitude compared to the hover

value. The centrifugal force component perpendicular to the blade also decreases

because of the lowered rotor speed in cruise, but only by about 66 percent 1

Thus, in cruise there is a significant imbalance of centrifugal force tending to bend

the rotor blade back (flap down). This imbalance creates a torsion moment about
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the blade inboard sectionsproportional to the lag bending deflectionas illustrated

in Fig. 8.26b.

Now considerthe static torsion balanceof the rotor blade. The net flap moment

due to aerodynamicand centrifugal forceshasa torsional componentproportional

to lag which must be balancedby the blade torsional stiffness:

M_, + I0w_0= 0 (8.1)

where M_ is the net bending moment nondimensionalized by I_ 2, 77 is the lag

deflection nondimensionalized by R, Ie is the torsional inertia nondimensionalized

by Its, we is the torsional frequency nondimensionalized by fl, and 0 is the local

torsional deflection. If the blade is considered to be semi-rigid such that the lag

and torsional deflections occur at the root of the blade, then an effective kinematic

pitch-lag coupling term can be defined as

0 M_ (8.2)

where Kp, > 0 gives lag-back/pitch-down coupling. The flap moment at the blade

root is given by

i_ = -_f i,-d,- - _p- _,,,,,, (S.3)
J ac

where L is the blade lift at a given spanwise position,/3p is the preeone angle, and

/3t,im is the elastic coning angle. In hover, the precone is selected to balance the

lift so Mt_ is small and Kp, is small. In cruise, the precone term dominates so the

kinematic pitch-lag coupling can be estimated by:

_p
Kp.- low_

(8.4)

Therefore, the precone and torsional stiffness determine the pitch-lag coupling,

and this coupling happens to have a significant effect on tiltrotor stability in high-

speed flight. The effective kinematic coupling of the baseline system is estimated

in reference 31 to be -0.3 which is considered a high value.
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In the presentanalysis, there is no needto estimatekinematic pitch-lag cou-

pling. The equationsof motion derived in Chapter 4 include the preconeeffect

naturally aspart of the elasticity of the rotating beam.

8.3.2 Positive Pitch-Lag Coupling

From the discussion of the previous section, it seems rather obvious that if posi-

tive pitch-lag coupling were introduced into the rotor system to offset the negative

pitch-lag coupling introduced by rotor precone, then the stability characteristics

would improve. There are two methods which may readily be used to introduce

positive pitch-lag coupling (lag-back/pitch-down): kinematic coupling in the con-

trol system and elastic bending-twist coupling in the rotor blade.

Certain aspects of kinematic coupling in the control system may limit use of

this approach, at least for stiff-inplane rotor systems such as the baseline gimballed

rotor system. The virtual lag hinge of stiff-inplane rotor systems can be well

removed from the control attachment point (pitch bearing location) of the blade

such that the lag deflection experienced at the control system is very small. This

may be a problem with tiltrotors since the blades are short and stiff to begin

with. With lag deflections at the control system small compared to outboard

lag deflections, the control system pitch-lag coupling will not be able to compete

with the precone effect. The elastic lag deflection of the baseline rotor blade is

shown in airplane mode at the normal cruise velocity in Fig. 8.27. It is shown that

the lag deflection anywhere inboard of 30 percent is an order of magnitude less

than the deflection at the tip, and the virtual lag hinge is at about 40 percent.

Thus, the lag deflection associated with the control system (located at about 10

percent) is much smaller than the lag deflection associated with the precone effect

(a summation of lag deflections along the blade span). Another adverse aspect of

using the control system to create positive pitch-lag coupling is the constraints on
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control systemparametersfor rotor flapping and handlingqualities. The mannerin

which the control systemis usedto obtain kinematic pitch-lag coupling is to alter

the pitch horn cant angle,pitch link cant angle, pitch bearing spanwiselocation,

pitch horn length, or radial location of the pitch horn to pitch link attachment

point so that elastic lag motion will createblade pitch. The geometry of these

parameters is illustrated in Fig. 8.28. The problem associatedwith changesin

the control systemis that theseparametersalsocontrol the pitch-flap coupling of

the rotor system which is generallyset to constrain rotor flap motion. Handling

qualities will also be influencedby the control system changeswhich introduces

additional constraints on the amount of pitch-lag kinematic coupling which may

be obtained for the system.

The addition of pitch-lag coupling through designof a bending-twist-coupled

rotor blade has someadvantagesas well as disadvantagesas compared to the

control system approach. The disadvantageis that an entirely new rotor blade

must be designedwhich may havedifferent frequenciescomparedto the baseline

design, and the blade designmust incorporate anisotropic layups of composite

materials for which there is relatively little experiencein usageat a production

level. Becauseof the large built-in twist of tiltrotor blades, it is not possible

to decouplestructural lag-bending-twist and flap-bending-twist, soboth pitch-lag

and pitch-flap couplingsexist simultaneously.For gimballedsystems,this is not a

problembecausethe fundamentalflap mode is the gimbal-flappingmode which is

unaffectedby the elasticity of the blade. Thus, an advantageof the bending-twist-

coupledrotor bladeis that gimbal flapping is uncoupledfrom the pitch-lag coupling

which is not the casefor the control system approach. Another advantageof the

bending-twist-coupledbladeapproachis that the pitch-lag coupling isproportional

to the local lag deflection rather than the lag deflectionat one particular inboard

section. The amount of positive pitch-lag coupling which can be created should
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therefore be on the order of that associatedwith the preconeeffect.

The basicconceptof a bending-twist-coupledrotor bladeusedin tiltrotor cruise

modeis illustrated in Fig. 8.29. An untwisted bladeis usedin the diagramto clar-

ify the deformations.The collectivepitch in tiltrotor cruise(V/f_R) is about 46° at

the 75 percent spanwise station. At the 40 percent location of the virtual lag hinge,

the pitch angle due to blade twist is 11" higher, so for purposes of illustrating the

bending-twist-coupled rotor blade on an untwisted blade, the blade chord is ro-

tated to 57 ° with respect to the plane of rotation. Now, define flatwise bending as

bending of the rotor blade in a plane perpendicular to the chord. On conventional

helicopters this is referred to as flapwise bending (bending perpendicular to the

plane of rotation). For the present configuration it is seen that flatwise bending

has a larger inplane (in the plane of rotation) component than out-of plane (flap-

wise) component. Therefore, to create pitch-lag coupling in the rotor system, the

blade should be flatwise-bending-twist coupled. Chordwise-bending-twist coupling

can also contribute, but as velocity and, therefore, collective increase, this elastic

coupling would have a diminishing effect on pitch-lag coupling.

The manner in which flatwise-bending-twist coupling may be introduced into

a rotor blade is addressed next. An anisotropic layup of off-axis composite plies

in the primary structure of the blade is one of the most effective ways to create

this type of elastic coupling. A simple truss analogy is shown in Fig. 8.30 to help

explain exactly why bending-twist coupling is created with off-axis composite plies.

As shown, a rotor blade section is assumed to be composed of a composite laminate

rotated off-axis in the same direction on both the upper and lower surfaces, at a

particular section of the blade undergoing flap-down bending, the bending moment

can be translated into a force-couple such that the upper surface has a tension force

and the lower surface has a compressive force. Looking only at the upper surface,

the composite material may be modeled as a simple truss with two crossing rod
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members.Onerod is extensionally-stiffand representsthe fiber direction, and the

other rod is extensionallyflexible and representsthe matrix direction. A tension

force on this model can be seento not only extend the truss, but also to shearit

in the direction of the flexible rod member.The shearstrains areconsistentalong

the entire upper surfaceof the airfoil, creating a shearflow which tends to twist

the blade nose-down. The lower surface is in compressionrather than tension.

The material fiber direction on this surface is the sameas the lower surface,so

in compressionthe shearflow is in the opposite direction from the upper surface,

and alsoproducesnose-downtwist. The bending-twist coupling illustrated in the

figure is flatwise-bending-up-nose-upwhich is just the oppositeof what is desired

for the tiltrotor blade to offset the preconepitch-lag effect. Flatwise-bending-

up-nose-downcoupling is createdby reversing the fiber anglesillustrated in the

diagram.

8.3.3 Investigation of Bending-Twist-Coupled Blades

To develop guidelines for realistic magnitudes of bending-twist coupling, a NACA

0012 airfoil section composed entirely of graphite/epoxy composite weave material

is considered. The airfoil cross section, illustrated in Fig. 8.31, is shown to have a

chord length the same as that the baseline tiltrotor blade. The laminate material

properties are listed in table 8.2, and the laminate thickness is selected to give

flatwise-bending stiffness and torsional stiffness within range of the baseline blade

when the material plies are oriented at 0 ° ( the cross-ply of the weave would be at

90°). There are approximately 18 plies of weave material in the laminate as shown

in Fig. 8.32. Here, two cases to be considered are illustrated. In case 1 the entire

laminate may be rotated off-axis at an angle labeled c_. In case 2 only half the

plies (every other laminate) may be rotated off-axis at an angle labeled a while all

the remaining laminates (designated/3) stay at 0 °. Case 2 is considered to add the
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reality of structural constraints which may limit the amount of primary structure

which can be used to create bending-twist coupling. The fiatwise and torsional

stiffnesses are plotted as a function of off-axis ply angle, c_, in Fig. 8.33. This

plot shows that the flatwise and torsional stiffnesses associated with both cases are

within the range of those respective stiffnesses associated with the baseline blade.

The range of the stiffnesses of the baseline account for variations of the stiffnesses

from about 40% span out to the tip. The tendency for increases in ply angle is

to reduce the flatwise bending stiffness and increase the torsion stiffness. At high

ply angles the bending and torsion stiffnesses of the composite blade models are

shown to leave the baseline range, which is an indication that the blade stiffnesses

may create a structural or dynamic problem. The magnitude of the bending-twist-

coupling stiffness increases with ply angle until reaching a peak at about 25 ° as

shown in Fig. 8.34. The location of the peak makes sense because the coupling is

zero at 0 ° and 45 °. One would then expect a maximum about half way between

these two points. A convenient way to characterize the magnitude of the bending-

twist coupling is to relate it to the bending and torsion stiffnesses to which it is

related. To this end, a coupling parameter is defined as

I_'34
_ (8.5)

E1 ! + GJ

where/(34 is the flatwise-bending-twist coupling stiffness. This parameter relates

the amount of bending-twist coupling that can realistically be designed into a blade

to the bending and torsional stiffnesses themselves. As the amount of bending or

torsion stiffness increases, it is easier to add a greater magnitude of coupling into

the design, and this is reflected by the coupling parameter. A plot of the coupling

parameter A is shown as a function of ply angle for the two composite blade cases

in Fig. 8.35. This plot is very similar to that of Fig. 8.34, indicating that the

parameter is consistent with magnitude of coupling in the blade, even though the

bending and torsion stiffnesses are changing as the ply angle increases. A realistic
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value for the coupling parameter can be determined by comparing the plot of

Fig. 8.33 with that of Fig. 8.35. Figure 8.33 shows that for case I the stiffnesses

leave the baseline range at a ply angle of about 12 °, and for case 2 the stiffnesses

leave the baseline range at a ply angle of about 20 °. Using these respective angles

as constraints, from Fig. 8.35 the coupling parameter is limited to _ = .25 for case

1 and to _ = .12 for case 2. These numbers may then be used as guidelines for

preliminary design of a rotor blade based on a set of baseline uncoupled stiffnesses.

The coupling parameter of case 1 shows the upper limit of how much coupling can

be added to the blade without significantly altering its baseline characteristics.

The coupling parameter of case 2 is a more conservative number which accounts

not only for the constraints of case I, but also for the likelihood that all structure

in the blade cannot be used to create coupling.

The influence of flatwise-bending-twist coupling on the stability of the baseline

system was then investigated. The coupling parameters are used to define the

flatwise-bending-twist coupling stiffness distribution of the baseline blade based on

the baseline classical beam stiffnesses. The classical beam stiffnesses themselves

are not altered, so the baseline blade frequencies are retained. This procedure

isolates the influence on stability by the addition of elastic coupling into the blade.

The plot of Fig. 8.36 shows the damping of the wing beam mode damping as a

function of velocity for three value of the coupling parameter. The baseline design

is uncoupled, so )_ = 0 for this case. For the remaining two cases the indicated

value of _ and the baseline flatwise-bending and torsion stiffnesses were used to

calculate K34 at each blade station outboard of 40% span. There was no structural

coupling for the inner 40% span because it may be desirable not to have coupling

in the high-stress root section. The velocity at which the system becomes unstable

is shown to increase with the magnitude of coupling. The flutter velocity of about

250 knots is increased to about 360 knots at )_ = .10, an increase of 44 percent. The
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plot of Fig. 8.37 illustrates the sensitivity of flutter velocity to the point at which

coupling is initiated (blade coupled from initiation point out to tip). This plot is

based entirely on the _ = .05 coupling. The baseline design is, again, uncoupled

so the initiation point is given a value of r/R = 1.0. The previously obtained

result is established at r/R = 0.4, and the flutter velocity increases. Reduction of

the initiation point to r/R = 0.2 is shown to greatly increase the flutter velocity,

indicating that the coupling has the greatest effect at the inboard sections of the

blade. This result seems reasonable considering that the bending slope for the

fundamental bending mode has the greatest values in this section of the blade.

The increase in flutter velocity for this case is about 56 percent over the baseline

design.

Although no kinematic pitch-lag coupling is considered in the present analysis,

it is possible to calculate an effective kinematic coupling based on the elastic twist

of the blade tip. The kinematic pitch-lag coupling then becomes a function of

velocity because of the change in collective pitch, which places increasingly more

of the flatwise-bending in the lag direction. The effective pitch-lag coupling was

calculated based on an untwisted version of the baseline blade, and the results are

plotted in Fig. 8.38. The effective coupling associated with the _ = .05 case (40%

initiation) is shown to be on the order of 0.3 which is considered a large value, and

has about the same magnitude as the negative pitch-lag coupling calculated for

the precone effect in reference 31. The effective kinematic pitch-lag coupling for

the )_ = .10 case is even larger, reaching a maximum of about 0.8. Thus, very large

values of pitch-lag coupling can be obtained using elastic flatwise-bending-twist

coupling in the rotor blade.

The impact of bending-twist coupling on tiltrotor performance and blade loads

is investigated next. The cruise performance in airplane mode at V/_R = .7 is

plotted as a function of disc loading in Fig. 8.39. While an untwisted blade is shown
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(asa reference)to haveanadverseeffecton cruise performance, the bending-twist-

coupled blade is shown to have the same performance as the baseline blade. The

hover figure of merit is plotted as a function of disc loading in Fig. 8.40. Here,

the untwisted version of the baseline blade is shown to have slightly improved

performance over the baseline blade. The bending-twist-coupled blade has virtually

the same performance as the baseline with slightly better figure of merits at low

disc loadings and slightly lower figure of merits at high disc loadings. Root bending

moments in the lag and flap directions are plotted as a function of azimuth station

in Fig. 8.41. The flight mode here is conversion with the pylon at 75 ° and a velocity

of 100 knots. The bending moments predicted for the coupled and baseline blades

are shown to be virtually the same for both directions.

From the previous discussions of this section, the use of flatwise-bending-twist-

coupled blades are shown to have a very favorable influence on stability without

creating adverse effects on performance or blade loads. The potential impact of

coupling on blade dynamics and strength have been avoided in the investigation

by considering only magnitudes of elastic coupling which can be obtained without

significant changes in baseline stiffness properties.

8.4 Extension-Twist-Coupled Rotor Blade

This section focuses on means for improving tiltrotor performance through passive

blade twist control. The twist distribution of a blade is altered by elastically

coupling the blade extension and twist modes. Extension-twist coupling is effective

for tiltrotors because in changing from hover to forward flight there is a significant

decrease in rotor speed and a significant increase in inflow through the rotor disc.

The large change in inflow makes it desirable to have a change in twist distribution

so that more of the blade span is maintained at an optimum angle of attack. The

large change in rotor speed provides a mechanism, the change in centrifugal force,
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by which to alter the twist usingextension-twist coupling.

8.4.1 Optimum Twist Distributions

The twist distribution of the baseline tiltrotor blade is the same as that of the XV-

15 and is plotted in Fig. 8.1. This twist distribution is based on a compromise of the

twist desired for hover and that design for high-speed cruise. An investigation of the

optimum twist distribution for each flight mode, hover and cruise, was performed

based on both linear and nonlinear distributions. One difficulty encountered with

this investigation was the classification of the nonlinear twist distribution. The

baseline twist distribution is nonlinear, but can be accurately approximated by a

series of two linear distributions joined at the 40% radius. The nonlinear twist

distribution is then defined by the baseline twist from 0 to the 40% span followed

by a linear twist rate from 40% to the blade tip. The linear approximation of

the baseline twist outboard of .4R is 30°/R (18 ° over a span of .fiR). It should

be noted that all twists and twist rates are defined as positive for nose-down

twist (moving from root to tip). A plot of the power required for cruise is shown

in Fig. 8.42 as a function of twist rate for both the linear and nonlinear twist

distributions. The power required is shown as a percentage change relative to

the baseline (XV-15) power required, with a negative change indicating improved

performance. The performance associated with the nonlinear twist distribution

is shown to match that associated with the baseline XV-15 twist at 30°/R as

expected. The optimum nonlinear twist is shown to improve performance by only

one percent at a rate of 42°/R while the optimum linear twist distribution is shown

to improve performance by one-half percent at about 50°/R. From these results

it appears that the baseline twist is very close to an optimum value for cruise,

and that a nonlinear twist distribution is only slightly more desirable, from a

performance standpoint, than a linear twist distribution.
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A plot of the power required for hover is shown in Fig. 8.43 as a function

of twist rate for both the linear and nonlinear twist distributions. Again, the

power required is shownas a percentagechangerelative to the baseline(XV-15)

power required, with a negativechange indicating improved performance. The

performanceassociatedwith the nonlinear twist distribution is shown to match

that associatedwith the baselineXV-15 twist at 30°/R asexpected. The optimum

nonlinear twist is shownto improveperformanceby about six percent at a twist

rate of 12°/R while the optimum linear twist distribution is shown to improve

performanceby about l l percent at a twist rate of 25°/R. From these results

it appearsthat the baselinetwist is very far from an optimum value for hover,

and that a linear twist distribution is much more desirable,from a performance

standpoint, than a nonlinear twist distribution.

8.4.2 Design of Extension-Twist-Coupled Blades

It is difficult to define an extension-twist-coupled rotor blade in terms of the base-

line tiltrotor blade because there are several aspects of this coupling that require

non-traditional design methodology. Definition of an axial stiffness for a rotor

blade, as is required for this type of coupling, is itself non-traditional. In most

rotorcraft analyses, rotor blades are assumed to be rigid in extension. The in-

troduction of extension-twist elastic coupling also creates bending-shear coupling

between the two bending directions. For example, the bending stiffness in the

flatwise-bending plane is coupled to the shear stiffness in the chordwise-bending

plane. The bending-shear coupling, as shown in Chapter 3, significantly reduces

the effective bending stiffness of the structure. Unless high stiffness laminates are

used efficiently in the blade primary structure, it is unlikely that the extension-

twist-coupled blade design can maintain baseline bending stiffness values, and still

achieve desired twist deformation goals. By efficiency here it is meant that all
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or most of the primary structure must contribute to the desired coupling effect.

Another differentiating aspect of the extension-twist-coupled blade design is an

increase in blade tip-mass. An increase in blade tip-mass is necessary to increase

the centrifugal forces which act as the twist deformation mechanism. With both

increased tip mass and bending-shear coupling, the fundamental frequencies of an

extension-twist-coupled blade almost certainly must deviate from that associated

with the baseline rotor blade.

Representative guidelines for establishing stiffness properties of an extension-

twist-coupled blade are based on the same Gr/E material used for the bending-

twist-coupled blade and the same cross section model shown in Fig. 8.31. The

laminate thickness is reduced by one-half in order to reduce the extension stiffness

to values which can be effective in an extension-twist-coupled blade. The laminate

considered is shown in the top of Fig. 8.32, except only half the plies exist in the

present model (9 instead of 18 plies). For an extension-twist coupled blade, the

laminate on the lower surface is rotated in the opposite direction to the laminate

on the upper surface, so it is understood that an angle oriented at +a on the

upper surface is opposed by a laminate oriented at -a on the lower surface. Based

on these assumptions, the flatwise-bending and torsion stiffnesses associated with

an extension-twist-coupled blade are plotted as a function of off-axis ply angle

in Fig. 8.44. This plot shows that the flatwise-bending stiffness is reduced by a

factor of about one-half to one-third that obtained for the baseline and bending-

twist-coupled blades. The torsional stiffness is also lowered, but remains in a

range close to that used in the baseline blade. Extension and extension-twist-

coupling stiffnesses are plotted as a function of off-axis ply angle in Fig. 8.45.

The extension-twist-coupling stiffness reaches a maximum around 22.5 °, and the

extension stiffness is seen to drop rapidly with increases in the ply angles. Realistic

values of coupling stiffness are not extracted from the baseline blade stiffnesses,
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aswasthe casefor the bending-twist-coupledblade,and insteadare derived from

the airfoil crosssectionmodel itself. The problem here is that the rotor system

frequencieswill change,but the frequenciesof the rotor bladewill changeanyway

with the addition of tip mass(as is required to obtain large twist changes). The

losshere is that deviationsfrom the baselinestiffnessvalueswill createunknown

deviationsin the stability of the systemsimply from changesin blade frequencies.

The effect on stability of adding the extension-twist-coupling alone will not be

known.

An analytical model of an extension-twist-coupledblade is basedon the cross

section model discussedin the previousparagraph. The blade sectionsoutboard

of 20percent spanareconsideredto beelastically coupledwhile the blade section

inboard of 20percentspanis consideredto beuncoupledand built up to withstand

high loads. The stiffnessvaluesfor the coupledsectionsof the bladeare obtained

for a laminate ply angle of a = 20 ° because of the large amount of extension-

twist-coupling obtained at this angle. The extension stiffness associated with this

ply angle is 232 which is the value used for the coupled blade sections. For the

uncoupled root section, this stiffness is increased to 500. The extension-twist

stiffness K14 can reach as high as .5 as shown in Fig. 8.45, but to account for

reductions in coupling due to uncoupled structural components in the cross section,

a conservative value of -.2 is used in the coupled sections of the blade model (the

negative sign gives the proper direction for the desired twist deformation as shall

be discussed shortly). The chordwise and flatwise bending stiffnesses are set to

one-half of the baseline values shown in Figs. 8.5 and 8.6, respectively. Torsional

stiffness by the guideline is about .0022, a low value which is desirable for obtaining

large twists. The torsional stiffness for the analytical model is set at .0044 using

the conservative approach adopted for the coupling stiffness. Values for the root

element of the analytical model (0 - .2 r/R) are unchanged from the baseline case.
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With the stiffnessesnow establishedfor the extension-twist-coupledblade, the

amount of twist deformation can only be further increasedwith additional tip

mass. To maintain realistic valuesfor the tip mass,the masscontribution of a

steel tip mass with a crosssection of 15 in2 is determined as a function of its

length. A plot of the running massat the blade tip versusthe tip masslength is

shown in Fig. 8.46. The finite elementmodel assumesa linear distribution over

the blade segmentsothe valueof the running massat the tip nodeis about twice

what the value would be if it wereconstant over the segment.The weight added

to the bladeis alsoshownin the plot. Reasonablylargetwists wereobtained using

tip massvaluesof 8 to 12which areshownto add between19and 26 poundsper

blade (114-156lbs. to total system). Three extension-twist-coupledblade cases

were consideredfor the presentinvestigation. Each casediffered only by the tip

massvalue, using 8, 10,and 12,respectively.The massdistributions for the three

casesare plotted in Fig. 8.47.

The twist designof the threeextension-twist-coupledbladecasesis considered

next. For the twist design,the optimum twist distribution for cruise modewill be

obtained asdeterminedfrom Fig. 8.37.This is donebecauseairplane cruisemode

is generally consideredthe more important flight mode, where the most time in

flight is spent,and is thus whereoptimum efficiencyis required. The optimum twist

distribution for this flight mode (as definedby the rigid blade study) is obtained

by calculating the elastic twist at the cruise rotor speed,and adding this twist

to the the undeformed (zero rpm) twist distribution. The twist distributions of

the threeextension-twist casesarecomparedto the baselinetwist distributions for

cruisemode in Fig. 8.48and for the undeformed(starting) condition in Fig. 8.49.

The twist distributions of the threeextension-twistcasesin cruisemodeare shown

to be identical asexpected,with a twist rate in the outboard sectionsjust slightly

higher than the baselinetwist distribution. Little deviation from the baselinetwist
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distribution wasexpectedbecausethe baselinetwist wasshownin Fig. 8.36 to be

very closeto an optimum for performance. The undeformedtwists for the three

casesdemonstratethe increasetwist associatedwith increasedtip mass. Compar-

ing Figs. 8.48 and 8.49, one can determine that twist deformationsobtained at

the blade tip are 12, 16, and 22 degreesfor the tip-mass casesof 8, 10, and 12,

respectively. The twist distributions obtained for the hover mode are illustrated

in Fig. 8.50. Here,the twist distributions donot follow a consistentpattern where

the twist rate on the outboard end (the untwisting) becomesincreasinglysmaller

with increasedtip-massasone might expect. The centrifugal flattening (propeller

pitching moment) worksagainst the extension-twist coupling, attempting to fur-

ther twist rather than untwist the blade. This is becausethe pitch angleof all

the bladesectionsare positive with respectto the planeof rotation asrequired to

produce the lift neededfrom the rotor systemin hover. The centrifugal flattening

effectattempts to pitch the outboard sectionsin a nose-downsense(into the plane

of rotation) which tends to increasethe negative twist of the blade. This effect

increaseswith the tip-masswhich helpsexplain why the hover twist distributions

in Fig. 8.50are as shown.

8.4.3 Investigation of Extension-Twist-Coupled Blades

The performance associated with the hover and cruise flight modes are shown for

the three extension-twist-coupled blade cases in Fig. 8.51. Based on the deformed

twist distributions shown in Fig. 8.48 and the performance estimate provided in

Fig. 8.36, the performance of the extension-twist-coupled designs in cruise should

be about the same and should improve relative to the baseline by about one per-

cent. This is indeed shown to be the case in Fig. 8.51. For hover, the performance

improvement should be no greater then 10 percent which is shown to be the im-

provement associated with the optimum linear twist in Fig. 8.37. The actual
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deformed twist distribution obtained for the hover case is close to the nonlinear

twist case shown in that figure. Based on that curve, and the twist rate for the

outboard blade sections in hover (23-26 deg/R), the performance improvement

should be about 3 to 4 percent. The actual performance improvement predictions

for these cases range from 6 to 7.5 percent with the tip-mass of 10 showing the

greatest improvement. The additional improvements here are attributed to the flap

deformation associated with the increased tip-mass over the baseline value. The

flap deformation is in the negative direction since the precone is selected based on

the baseline mass distribution. As the tip-mass increases, the additional centrifu-

gal force bends the blade down which is tantamount to reducing the precone on

the baseline blade. With the blade closer to the plane of rotation the lift is more

aligned with the desired direction of thrust and the efficiency is increased. The

performance improvement associated with adding tip-mass to the baseline blade

(without extension-twist-coupling) is shown in Fig. 8.52 to be about one percent.

The extension-twist-coupled blades are more flexible in bending so the performance

improvement due to the tip-mass increase should be even greater for them.

The performance results of Fig. 8.51 are promising, but the stability of the

extension-twist-coupled blades must be investigated next. First, the stability of

the extension-twist-coupled blades without the precone effect is considered. The

beam wing mode damping is plotted as a function velocity in Fig. 8.53, and shows

that the velocity at which flutter occurs is significantly reduced by the increased

tip-mass. One reason for this decrease is the reduced frequency of the wing torsion

mode created by the additional rotor mass. The reduction in torsion frequency

brings the wing beam and torsion mode frequencies closer together which is very

destabilizing as discussed in Chapter 2. Wing frequencies are plotted as a function

of velocity in Fig. 8.54 for three cases of the uncoupled baseline blade. The case of

additional tip-mass added to the baseline blade is shown to decrease the torsional
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frequencymuch more than the beamfrequency.An increasein the wing torsional

stiffnessby 20 percent is shownto increasethe wing torsional frequencyback to

near its baselinevalue over most of the velocity rangeconsidered. The effect on

wing beam mode damping for thesecasesis shownin Fig. 8.55. Here, the flutter

velocity is shown to decreasesignificantly with increasedtip masssimilar to the

results shown in Fig. 8.53 for the extension-twist-coupledblades. The addition

of wing torsional stiffnessto the baselineplus increasedtip masscase is shown

to increasethe flutter velocity by about two-thirds of the differencebetweenthat

caseand the baselinecase. These results indicate that most of the reduction in

flutter velocity with increasesin tip massis attributable to the changein the wing

torsional frequency.

The additional destabilizingeffectsof rotor precone(Bp= 1.5°)are illustrated

in Fig. 8.56which show that the extension-twist-coupledbladeson the baseline

systemhave very low flutter velocities. These resultsare shown for _p = 1.5° in-

stead of fly = 2"5° because the additional blade mass decreases the ideal precone for

hover. These poor results should be expected because of the increase in centrifugal

forces associated with the additional tip mass which, in turn, amplify the precone

effect. The precone effect will naturally be high in extension-twist-coupled blades

since both the precone and coupling effects are highly sensitive to the centrifugal

loads. It seems from these results that an extension-twist-coupled blade set must

have zero or very near zero precone. Whether or not the coupled blades, which

tend to be weak in bending, can survive the increased bending loads associated

with lower precone is another question. The present investigation does not include

a stress analysis, so this question will remain unanswered.
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Table 8.1: Parametersfor the baseline free-flight model.

Parameter Analysis Variable

CW

sw

s,

ct,,

or,

Ca,, 1

C4, 1

C.,_

C,.,

XCgw

ZCgw

xcgt

Value

ct/sigma 0.088

wing_area 1.08

tail..area .32

lift_slope_wing 6.0

lift_slope_tail 6.0

cd_wing .0

cd_tail .0

cmac_wing -.00

cmac_tail -.00

wing_.xcg .02

wing_zcg .1

horiz_tail_xcg 1.8

horiz_tail_zcg .05

wing._fixed_angle 3.0 °

tail_fixed_angle 3.0 °

wing_chord .42

horiz_t ail_chord .313

parasite_drag_area 0.025

zcgt

O_w

2
Ott

Cw

c_

IA

i Wing and tail drag included in parasite drag area.

2 3.0* nominal, can vary 0 to +6 degrees.
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Table 8.2: Material properties for IM7/3501 Gr/E woven cloth.

Property Value

Ell (psi)

E22 (psi)

E3a (psi)

Gas (psi)

Gl3 (psi)

G23 (psi)

/)12

VI3

V23

p (pci)

tplu( in )

11.64

11.64

1.62554

0.909

0.909

0.909

0.0466

0.320

0.320

0.05781

.014
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Figure 8.1: Baseline rotor blade twist distribution.
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Chapter 9

Conclusions and

Recommendations

The research efforts presented in this dissertation may be divided into four main

parts. First, a simple rigid-blade, elastic wing, axial-flight tiltrotor analysis was

developed and used to investigate fundamental trends related to the whirl flutter

instability. Second, an anisotropic rotating beam analysis was developed and used

to investigate the accuracy of an implicit shear deformation model for highly-

coupled and highly-twisted rotor blades. Third, the system equations were derived

for the analytical model of a fully-coupled, anisotropic blade or wing, tiltrotor

in free-flight or in a wind tunnel. Fourth, the loads, performance, and stability

characteristics of some example elastically-coupled rotor blades were investigated

and compared with those characteristics of a baseline system. This chapter presents

the major conclusions reached for each of these four parts of the present research,

and includes recommendations for future research in the final section.
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9.1 Fundamental Study of Whirl Flutter

The influences of several key system design parameters on tiltrotor aeroelastic

stability in the high-speed axial flight mode were examined in Chapter 2. The

findings of this investigation have substantiated earlier work performed by other

researchers as well as identified some new trends and the physical reasonings behind

them. Some of the important past conclusions which have been substantiated are

as follows:

1. Beam and torsion frequency separation has a large influence on stability of

the wing beam mode.

2. Negative 63 is more effective than positive 63 with respect to stability con-

siderations for a stiff-inplane rotor system.

The results of this study have also identified and explained at least two impor-

tant effects which have not been previously discussed in the open literature:

1. Lag frequency tuning appears to be a practical method for increasing axial

flight flutter velocities. The blade lag frequency may be selected to reduce the

coupling of the /3-1 and wing beam modes, thereby increasing the wing beam

mode damping.

2. An increase in forward wing sweep is destabilizing. This is because of

an increase in the rotor destabilizing force components in the beam and chord

directions. The wing frequency changes associated with the reorientation of the

pylon with sweep have a stabilizing influence on the beam mode, but this effect is

dominated by the rotor force changes.
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9.2 Dynamic Analysis of Pretwisted Elastically-

Coupled Rotor Blades

A dynamic analysis was formulated for rotating pretwisted composite blades which

exhibit anisotropic behavior in Chapter 3. This formulation incorporated the ef-

fects of shear deformation implicitly through elimination of the shear variables

in the material compliance matrix. The major results of this study are listed as

follows:

1. The implicit shear deformation model was able to capture the most signifi-

cant effect of shear deformation, namely the reduction in effective bending stiffness

that occurs when a substantial amount of bending-shear coupling is present in a

beam. The difference between implicit and explicit use of shear degrees of freedom

was shown to be less than 2 percent up to the second bending modes of some rep-

resentative rotor blades, and less than 4 percent up to the second bending modes

of some highly coupled box beam specimens.

2. One-dimensional global dynamic analysis based on classical beam kinematics

can accurately predict the bending and torsion frequencies of modes important

to an aeroelastic analysis. However, the section properties used in the global

analysis must account for the important nonclassical effects associated with shear

deformation, warping, and elastic couplings. These nonclassical effects were shown

to have significant influence on the frequencies of the fundamental modes of highly

coupled beam structures. Errors on the order of fifteen percent were reduced to

less than five percent through accounting of the nonclassical effects.

3. The influence of twist on the predictive capabilities of the analysis was shown

to be small.

4. The analysis of Chapter 3 was implemented using a p-version beam finite

element. Both the advantages and disadvantages of this approach were discussed.
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The p-version element proved to be convenient for assuring a converged solution,

and allowed the desired flexibility in tailoring the displacement approximations

to the dynamic characteristics of a given beam configuration. Some degree of

efficiency improvement was demonstrated for the uniform untwisted case, but ef-

ficiency does not appear to be an issue for more realistic rotor blade structures.

Much of the efficiency of using higher order elements was shown to be lost for a

highly twisted blade.

9.3 Development of the Aeroelastic Tiltrotor

Theory

The theoretical development presented in this dissertation represents the first

known attempt to include both anisotropic blade and tiltrotor configuration model-

ing capabilities in a general purpose rotorcraft analysis. Several specialized features

were developed for this system which include an anisotropic beam model with im-

plicit shear deformation for highly-coupled and highly-twisted rotor blades, a hub

model with six degrees-of-freedom plus gimbal capability, large pylon-tilt angles,

an aeroelastic wing model, and a fully-coupled aeroelastic trim and response ca-

pability for tiltrotors in free-flight or in a wind tunnel. The derivation of these

features were presented in Chapters 4 through 7. The following conclusions are

based on this study:

1. The present formulation shows that the rigid-body rotation associated with

precone contributes significant elastic pitch-lag coupling terms not included in past

UMARC formulations. These terms are essential for accurate prediction of stability

of most tiltrotor configurations.

2. Numerical integration is an effective analytical technique for the spanwise

spatial integration of beam finite element models of highly-twisted blades. Linear
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interpolation at the numericalquadraturepoints, basedon element end-node prop-

erties provides a high level of accuracy compared to constant-property elements.

9.4 Validation and Application of the Aeroelas-

tic Tiltrotor Analysis

This research represents the first known investigation of the aeroelastic loads,

response, performance, and stability of tiltrotors with elastically-coupled rotor

blades. The first part of the investigation focuses on validation of the tiltrotor

model for a baseline case. The second part of the investigation considers the

potential for increasing the baseline tiltrotor flutter velocity using bending-twist-

coupled rotor blades. This part of the investigation also considers the influence

of bending-twist coupling on performance and blade loads. The third and final

part of the investigation considers the potential for improving the aerodynamic

performance of tiltrotors using extension-twist-coupled rotor blades. This part of

the investigation also considers the influence of extension-twist coupling on sta-

bility. The following summaries and conclusions are based on these investigations

discussed in Chapter 8:

9.4.1 Validation of the Aeroelastic Tiltrotor Analysis

Validation efforts show that the present analysis is satisfactory with respect to

its predictions of loads, response, performance, and stability in all three modes of

tiltrotor operation: helicopter, conversion, and airplane flight modes. In high-speed

airplane flight mode, the present analysis predictions for a baseline configuration

produced the following conclusions:

1. Coupled bending mode shapes are in good agreement with predictions of

the reference 31 analysis.
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2. Cruise collective is only 1.3 percent different from prediction of the refer-

ence 31 analysis.

3. Predictions of wing and blade frequencies and damping are in good agree-

ment with results presented in reference 31. Predictions of wing beam mode damp-

ing also compare favorably with experimental results.

4. Whirl flutter is predicted to occur at about 305 knots by the analysis of

reference 31, and at about 285 knots by the present analysis (about 7 percent

difference).

5. Agreement in flutter predictions between the present analysis and the refer-

ence 31 analysis is less then 7 percent for the parametric variations considered of

the baseline precone and blade torsional frequency.

6. Propeller efficiency predictions agree well with XV-15 flight test data. A

maximum of 8 percent difference was predicted which is within the range of the

test data variations.

Predictions by the present analysis for a baseline design in helicopter, conver-

sion, and airplane flight modes produced the following conclusions:

1. Predicted collective pitch agreed within 5 degrees of the predicted values

of reference 31 in spite of differing analytical assumptions for the blade torsional

stiffness in these cases.

2. Damping of the wing modes (torsion, beam, and chord) follows similar trends

through conversion mode as those of the reference 31 analysis.

3. Propeller efficiency predictions agree well with XV-15 isolated-rotor test

data. A maximum of 4 percent difference was predicted which is less than the

range of the test data variations.

4. Blade bending loads trends with respect to pylon angle and flight mode

agree well with XV-15 flight test data. Agreement of load magnitudes were also

good over some of the velocity range considered for each pylon angle. The load
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predictions were found to be very sensitive to the selection of the tail incidence

angle.

9.4.2 Investigation of Bending-Twist-Coupled Blades

This investigation showed that elastic bending-twist coupling of the rotor blade

is a very effective means for increasing the flutter velocity of a tiltrotor. The

following conclusions were reached as part of the bending-twist-coupled rotor blade

investigation:

1. The negative pitch-lag coupling created by the rotor precone effect signifi-

cantly reduces the flutter velocity of tiltrotors in airplane flight mode.

2. The introduction of positive pitch-lag coupling via rotor blade elastic bending-

twist coupling can significantly increase the flutter velocity of a baseline system.

Flutter velocities were increased by as much as 44 percent.

3. The use of elastic bending-twist coupling rather than control mechanisms to

introduce positive pitch-lag coupling has distinct advantages: greater magnitudes

of pitch-lag coupling may be obtained and there is no associated influence on the

pitch-gimbal coupling.

4. The magnitudes of bending-twist coupling required to significantly improve

the tiltrotor stability characteristics are physically obtainable and well within the

range of realistic rotor designs.

5. The magnitudes of bending-twist coupling required to significantly improve

the tiltrotor stability characteristics have a negligible influence on tiltrotor hover

and cruise performance.

6. The magnitudes of bending-twist coupling required to significantly improve

the tiltrotor stability characteristics have a negligible influence on conversion-mode

blade bending loads.
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9.4.3 Investigation of Extension-Twist-Coupled Blades

This investigation showed that passive blade twist control via elastic extension-

twist coupling of the rotor blade has the capability of significantly improving tiltro-

tor aerodynamic performance, particularly in the hover mode. This approach was

shown to have a detrimental impact on stability characteristics, however, because

increased mass of the rotor system reduces the wing torsional frequency and in-

creased centrifugal force worsens the precone effect. The stability of an extension-

twist-coupled rotor blade could be made acceptable by: 1 ) increasing wing torsional

stiffness, or 2) reducing the rotor precone. The following conclusions were reached

as part of the extension-twist-coupled rotor blade investigation:

1. Optimum blade twist distributions for hover and airplane cruise were de-

termined assuming independent design for each flight mode. The optimum twist

distribution predicted for hover was 25°/R (nose-down) linear and the associated

performance improvement was about ll percent better than that associated with

the baseline twist distribution. The optimum twist distribution predicted for cruise

was a nonlinear distribution composed of the baseline twist from 0 to .4R and

42°/R (nose-down) linear from .4R to the tip. The associated cruise performance

improvement was about 1 percent better than that associated with the baseline

twist distribution. These results showed that significant performance improve-

ments may be gained by changing blade twist between the hover and cruise flight

modes rather than using a single blade twist compromised for both flight modes.

2. Extension-twist-coupled blade designs depend on high levels of centrifu-

gal forces to produce necessary twist changes. These designs generally result in

increased tip-mass compared to an uncoupled design.

3. Extension-twist-coupled blade designs do not generally result in reduced

torsional stiffness compared to uncoupled designs because anisotropic laminates

used to produce desired coupling have high off-axis ply angles.
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4. Example extension-twist-coupled designs improved performance predictions

for hover by 6 to 7.5 percent and for cruise by about 1 percent. The associated

twist deformation change between hover and cruise range from 8 to 10 degrees

measured at the blade tip.

5. Stability characteristics of the basic extension-twist-coupled designs in air-

plane mode are unacceptable. Reductions in flutter velocity range from 40 to 75

percent for the 1.5 ° precone case. About one-half of this reduction is attributable to

the decrease in wing torsional frequency due to increased rotor mass, and the rest

is attributable to increased precone effect associated with the increased centrifugal

forces.

6. Stability characteristics of the basic extension-twist-coupled designs can be

made acceptable if the following parameters can be achieved within the design

constraints: an increase in wing torsional stiffness on the order of 20 percent or a

reduction of rotor precone to near zero.

9.5 Recommendations for Future Research

The research presented in this dissertation shows that promising improvements in

tiltrotor aeroelastic performance may be gained through elastic tailoring of the

rotor blade. However, there are several areas where the investigations were limited

by the capabilities of the present analysis. The following section suggests enhance-

ments for the present analysis as well as recommendations for future research in

the area of elastically-coupled rotor blades.

1. The present analysis assumes a straight elastic axis for the blade. Many

modern tiltrotor design studies consider some type of swept blades for the purpose

of reducing drag divergence effects at high speeds. The UMARC general purpose

rotorcraft code, on which the present analysis is based, already has a swept elastic

axis capability. It is anticipated that these modifications may be introduced into
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the tiltrotor analysis with little difficulty.

2. The present analysis has a limited free-flight model. It is planned to rederive

the equations of Chapters 4 and 5 with fuselage motion terms included. The

inclusion of the fuselage motion will allow the analysis to include the antisymmetric

wing modes and to predict stability more accurately in free-flight.

3. The present analysis has a limited drive-train model. It has been shown by

other researchers that the drive-train dynamics can have a significant impact on

tiltrotor stability predictions. The present model considers only two cases: a con-

stant rotor speed (no speed perturbation) and a zero-frequency speed perturbation

(no stiffness associated with rotor speed perturbations). A drive train dynamics

model is planned to be added to the system which would allow specification of

torsional stiffness, damping, and inertia associated with the drive system and the

rotor speed perturbation.

4. The present analysis has no wing-download model. The rotor in hover

imparts downward flow on the wing which increases the effective weight of the

system by about 7 percent. The actual download depends on several parameters

of the wing such as area, flap excursions, and incidence angle. Relatively simple

models have been developed for predicting the download which can be included in

the present analysis.

5. The present analysis has no wing/body interference model. The presence of

the wing and fuselage interfere with the airflow through the rotor system, thereby

altering the angle of attack on the rotor blade. Therefore, even in symmetric flight

conditions such as airplane axial flight, the rotor will experience asymmetric flow

patterns which may contribute greatly to the dynamic loads on the system. The

difficulties associated with including some type of interference model have not yet

been investigated.

6. The present research does not consider hingeless and bearingless rotor tiltro-
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tor systems. These types of rotor systems have been considered for tiltrotors in

the past, so the influence of elastic coupling on blades of theses systems should be

investigated.

7. The present research does not use formal optimization techniques in design-

ing elastically-coupled blades. It is evident from the discussion on elastic tailoring

that many trade-offs must be considered. Certain assumptions were made in the

present investigations so as to account for strength and manufacturability con-

straints. The performance and stability characteristics of these designs may be

improved if these constraints were defined more rigorously through formal opti-

mization techniques.

8. The present research does not investigate the effects of elastic coupling on

blade transient response. The system response to gust loading is a very important

aspect of tiltrotor design, especially for a civil version of this aircraft. The large

disc area makes the tiltrotor very sensitive to gust loads which can produce un-

comfortable accelerations at the passenger seating locations. It may be possible to

improve this response using elastically-coupled rotor blades. Investigations of the

use of active controls to alleviate gust response is another worthy research topic.

9. Experimental verification of the elastically-coupled tiltrotor blade concepts

is required. There is very little data currently available, so it is not possible to

judge the accuracy of the present analytical predictions when blades are elastically-

coupled. Data on blade loads, performance, and stability are required, especially

stability data near the flutter boundary.
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Appendix A

Rigid Blade Tiltrotor

Analysis-Math Model

Development

The equations of motion are derived for a tiltrotor cantilvered wing model in the

axial flight mode. The derivation consists of five parts: the formulation of the blade

structural model based on a three-bladed gimballed rotor system with hub motions

included, the formulation of the rotor aerodynamics and associated contributions to

the system matrices, formulation of an elastic finite element wing structural model,

formulation of the wing aerodynamics and associated wing system matrices, and

coupling of the wing and rotor/hub systems. The formulation for the rotor system

equations of motion follows closely the formulation presented in Ref. 31. The new

part of the present formulation is the coupling of the rotor equations with a wing

finite element model rather than a wing modal representation. Forward wing sweep

is incorporated in the wing finite element formulation to allow that effect to be

studied.
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A.1 Rotor and Hub Structural Model

Consider a blade system rotating on a rigid pylon as illustrated in Fig. A.1. The

fundamental blade flap and lag motions are considered, and the pylon motion at

the pivot point has six associated degrees of freedom. The pivot point is located

a distance h behind the blade hub, and the rotor is shown to be oriented sym-

metrically with respect to the oncoming flow (tiltrotor axial flight mode). The

translational degrees of freedom at the pylon pivot are xp, yp, and zp which repre-

sent the vertical, lateral, and longitudinal motions, respectively, and the rotational

degrees of freedom at the pylon pivot are a,, a_, and a_ which represent the pylon

yaw, pitch, and roll motions, respectively. There are six rotor forces defined at the

rotor hub (in a fixed reference frame) which can be translated back to the pylon

pivot. These forces have both inertial and aerodynamic origins from the blade

system.

The rotor system is assumed to be three-bladed with a gimballed hub. There

are two degrees of freedom per blade which are associated with the fundamental

flap and lag blade modes, defined relative to the hub plane. These modes are

assumed to be uncoupled which can be a poor approximation of the elastic motion

of a tiltrotor blade because of the high twist and high collective pitch typically

associated with these blades. However, in this case the predominant flap motion

is a rigid body rotation about the center of rotation because of the presence of

the gimbal. Thus, an assumption of uncoupled flap and lag motions should not

have a major influence on the present model which does not consider all the elastic

blade motion. It has been shown in other investigations such as Kvaternik [16]

that accurate representations of basic tiltrotor dynamics may be achieved without

inclusion of the lag motion at all. Rigid pitch motion of the blade about its

feathering axis is also considered. The steady pitch is a sum of the root collective

and built-in blade twist. A perturbation of the pitch motion is associated with a
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small change in the control inputs and with kinematic pitch/flap coupling (_53 flap

hinge skew angle). The rotor is assumed to rotor freely on the shaft (windmilling

state) such that no torque is transmitted to the pylon pivot, and pylon pivot roll

motion does not influence rotor rotation rate. This state is modeled after the

equations of motion are transformed into the fixed frame, by assuming a zero

frequency for the collective lag mode. The initial equations of motion for the rotor

system with hub motions included are derived in the rotating reference frame for

a constant rotational speed ft.

The equations of motion for the blade in the rotating reference frame with the

pylon pivot motions included are given in Ref. 31 in nondimensional form as:

I3(_ +._)+ 1_[-(%-2 _) cos_,m+(;5_+2 ;5_)s,nCm]+S0 z e

_ "rMF (A.1)
ac

S_ SS 11

I;(¢ +.¢¢)+S¢[(xp+h2• "" ;;_)sine,m-(Up-h ;5_)cos¢_]-I;_ _z

_ 7ML (A.2)
ac

where the l_lF and ML represent the pure flap and pure lag components of the

distributed aerodynamic forces:

_0 R
MF = F,r dr (A.3)

LML = F_r dr (A.4)

and the inertia constants are nondimensionalized by the rigid-blade flap inertia Ib

(I_ = I_/Ib for example) and are defined in terms of the blade section mass and

the blade mode shapes:

_0 R
Ib = r2m dr (A.5)

I_ = _md_ (A.61

I_o = rl_mr dr (A.7)
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_0 RS z = rlzm dr (A.8)

ZI¢ = q_mdr (A.9)

/oIC_ = TRrnr dr (A.10)

/oRS¢ = rl_m dr (A.11)

The blade flap bending mode is represented by rl_ and the lag bending mode is

represented by rR, and the mode shape values are rlz = r for rigid flap motion and

rli = r for rigid lag motion. Coriolis inertial coupling is neglected in these equations

because these forces are small compared to the aerodynamic forces associated with

high inflow aerodynamics, where the forces in the lag direction are of the same

magnitude as the flap direction.

The equations of motion are transformed into the fixed frame using the Fourier

coordinate transformation based on three blades:

. "" .. 7MFo
I_o(3 o +V_o3O ) + S_o zp - (A.12)

ac

I_ [_,c +2 illS +(u_ --1)31c] + I_(- _ +2 _) -- 7gFWac (A.13)

I_ [_ls -2 _lC -_(/2_- 1)3,s] + I_(_. +2 _) - 7MF,Sac (A.14)

• . 7MLo15( 'o I;o - (A.15)
ac

I_ [_'1c +2 _ls +(u_- 1)(lc] + S_(- "Y'p +h _) - 7ML, Cac (A.16)

IZ [?',s -2 _,c +(v_- 1)(,s] + SZ(_:p +h _) - "yML,Sac (A.17)

The frequencies and inertial parameters in the fixed frame are shown to vary among

the equations of motion associated with the fixed frame degrees of freedom. This is

so because the root constraint conditions vary for a gimballed rotor system based

on the rotor mode involved. For the gimballed rotor, in the collective flapping

mode and the cyclic lag modes the blade acts as if it were cantilevered, while in

the cyclic flap modes the blade acts as if it were hinged at the center of rotation. In
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collective lag mode, the bladeacts as if it werecantileveredif the rotor is assumed

to turn at constant speed,but for a windmilling rotor the blade is free to rotate

about the shaft so that

u¢0 = 0 (A.lS)

I_o = 1 (A.19)

I_o_ = 1 (A.20)

The flap aerodynamic moments in the fixed frame are given by:

1 _ MF,,, (A.21)MFo = _-

2

MF, c -- N _ MF,. cos v)m (A.22)

2

MF, s -- N _ M£,,, sin _,_ (A.23)
m

A.2 Rotor Aerodynamic Model

The rotor aerodynamics are based on linear strip theory with the section lift and

drag defined as:

1 2

L = _flC(_ T @ U2p)Cl (A.24)

1 2
D = -_pc(u T + @)c,_ (A.25)

where ct and Cd are the local blade section lift and drag coefficients, respectively.

The velocity components are defined with respect to the hub plane as illustrated

in Fig. A.2, which also illustrates definition of the angle of attack, inflow angle,

and pitch angle of the blade section. Resolving the section aerodynamic forces into

the hub plane, and nondimensionalizing by ac gives the blade loads as:

Fz cl Cd

a---_ = U(uT-_a - uP-_a) (A.26)

c, C_aa) (A.27)G U(UPTa+ ur
ac

F_ UunC_aa _F_ (A.28)ac 2a
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and the net bladeflap and lag momentaredefinedby substitution of these expres-

sions into Eqns. A.3 and A.4. The hub forces in the fixed frame are also desired

because these forces act on the wing. In coefficient form, the required hub forces

are defined in terms of the blade section forces as:

CT _ 1 _-, [l __F_dr (A.29)
aa N _ Jo ac

2CH 2
- y'_(cos ¢_ --dr + sin Cm --dr) (A.30)

aa N ,. ac ac

2Cr 2
- _-_(sin Cm -- dr- cos_bm --dr) (1.31)

aa N ,,, ac ac

CQ - IA.  Iaa N ac

2CM. 2 [1 F,
aa - N _-" sin g'm Jo --r dr (A.33)

m ac

2CM_ 2 fo'aa = N _--_cos _/,,, F_rdr (A.34)
m ac

Evaluation of the force integrals requires substitution of the aerodynamic pa-

rameters in terms of perturbation quantities which result from blade and hub

motion The damping and stiffness associated with these perturbations ultimately

determine the stability of the system. Each velocity component may be written as

a sum of steady and small perturbation parts where the steady parts are given by:

UT = fir (A.35)

up -- V + v (A.36)

un = 0 (A.37)

where it can be shown that for high inflow:

CT

v = 2_--7 (A.38)

The perturbation parts of the velocities are produced by the blade and hub motion

aS:

_UT = r((_. -- ()- h(_ sinCm+ _. cosCm) +
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V(au sin ¢,.,, + a. cos _,,,,)+ yp cos g,_- _:v sin g,_

,-(/}- _, cos¢,,,+ 3. sin_,m)+_v

h(- _y cosCm- _. sin _) + v(au cosCm -a. sin'4,_)

- ._p sin ¢,,,- ._p cos g,_

(A.39)

(A.40)

(A.41)

To facilitate integration of the terms involving these perturbations quantities, the

tangential and perpendicular velocity perturbation components are written as:

6UT = r6uwa + 6UTs (A.42)

6up -" r6UpB + 6UpA (A.43)

The other aerodynamic parameter perturbations are given by:

Oct Oct . (A.44)
6cl - Oa6a + -_-_6_

C')Cd6a OCd . (A.45)

6a = ,50 - UT6Up -- up6ut (A.46)
U 2

6U : UTC_U T -- _pSUp (A.47)
U

_M = M,6U (A.48)

60 = O- Kp_ (A.49)

Substitution of the perturbation quantities into the integral force equations results

in some rather lengthy and complicated expressions which may be simplified by

expanding the force equations in terms of a set of aerodynamic coefficients de-

fined in Ref. 31. These terms represent parts of the force integrations which are

coefficients of the various control and velocity perturbations, such that:

fo F_r dr
ac

fo I F_ dr
ac

fo a F_ dr
ac

= Mo+M.6uTB+M_6uTA+M_6upA+M_6upB+Mo60 (A.50)

= Ho q- Hu_uT B + H_6UTA + Hx6uPa + H_i_UPB + Ho60 (A.51)

= To+ T.6ur_ + T_6_rA+ T_6upA+ Tz6_p. + Te60 (A.52)
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' = Qo + Q,_fuQ,_ + QJfUQA + Q_upA + Q/_,Sup B + Q0_0(A.53)
ac

_01 : Ru_utt (A.54)
F_ CT

a--gd_ - _-J-d

where the aerodynamic coefficients M, H, T, Q, and R represent flap moment, in-

plane drag force, thrust force, torque moment, and blade radial force, respectively.

The subscripts of these terms designate the source of the force or moment - 0 is

the trim value, # is hub inplane velocity, ¢ is blade rotational velocity, l) is flap

velocity, A is hub longitudinal or inflow velocity, and 0 is pitch control.

The blade forces are then transformed into the fixed frame to obtain the final

aerodynamic force relationships in terms of the forward flight velocity and the

blade and hub motions as:

MFo = Mo+M_(az-_o)÷Mh_o

M_ _p +Mo(Oo- Kp]_o) (A.55)

MEw = M_,[-h _ +Ya::-t- Yp] +

io(O1c -- Kpflic) (A.56)

iF, s = M,[-h 5_ +V%- _cp] +

it(- i,_ + il_)+ i_(5,_ -_,_+ Z_)+

Mo(Ols - Kp_Is) (A.57)

--MLo = Qo + Q_(g_, - _o) + Q_ _o

Q_ _'p +Qo(Oo- Kp_o) (A.58)

-M_,_ = Q.[-h _ +y._+ 9_]+

Q_(_,o- _,_)+Q_(_,_+_,_- _) +

Qo(O,c - gpflzc) (A.59)

--ML,s = Q.[-h g_ +V%- _p] +

Q_(-i,_ + _,_)+Qz(_l_-Z,o+ _)+
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Qe(O_s- Kp_ls) (A.60)

Substitution of these expressions into Eqns. A.12-A.17 and grouping terms as coef-

ficients of the blade and pylon degrees of freedom complete the equations of motion

for the rotor system.

As stated earlier, the net force and moments in the fixed frame are also required

as these forces act on the wing, and those expressions will be needed when the

wing formulation is coupled with the rotor/pylon system. After substitution of the

perturbation quantities into the integral force expressions given by Eqns. A.29-

A.34, and carrying out the integrations, the blade forces are transformed into the

fixed frame to obtain the final hub forces in terms of the forward flight velocity

and the blade and hub motions as:

(A.61)

(A.62)

(A.63)

(A.64)

There is also an inertial force contribution to the hub forces which must be added

to the above aerodynamic contributions:

(CT)_ _ S_o *_o___ zpM:.. (A.65)
aa "/ "_

(2CH)_ = ___S; *(,s - _ M;(*X*p +h *_) (A.66)

t2Cz S* ** 2 **
__)_ = _L (,c --M;(Yp-h'_) (A.67)

aa _/ 7
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_  ;0o -g az (A.68)
o(l ,7 ,7

Rather than carry out the aerodynamic integral expressions for the hub moment

terms CM, and CMv, and then adding in a set of inertial contributions, these

moments may be expressed as the result of a spring moment which includes both

the aerodynamic and inertial contributions:

2CM. m

- 1)Z,s (A.69)
ffa "7

2CM,, _ I;(u_-- 1)_,C (A.70)

It is seen from these expressions that the hub moments are zero when the in-vacuum

flap frequency us -- 1 such as the case of an articulated rotor hinged at the center

of rotation, and the hub moments increase as the flap frequency increases for given

values of the flap angles.

All that remains for development of the aerodynamic contributions is definition

and evaluation of the integral expressions for the aerodynamic coefficients. These

expressions are provided in Ref. 31, and are evaluated numerically in the present

analysis. The numerical integration is performed by discretizing the blade into

several segments, and then summing up the aerodynamic contribution of each seg-

ment. A trim procedure is implemented based on changes in collective pitch until

a desired rotor thrust level is obtained, usually zero for a windmilling rotor. The

numerical approach allows changes in the blade section aerodynamics to be consid-

ered, including the influence of stall and compressibility. Numerical integration of

the aerodynamic coefficients requires definition of _ _ _ _ _ and
2a' 2a' 2a ' 2a' 2a ' 2a

at each blade segment which are based on the local pitch, inflow, and attack angles

and local Mach number. The following analytical expressions, defined in Ref. 31,

are used for the unstalled lift parameters and include Mach number corrections:

2a 5(1- M2) -½ (A.71)
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c l

2_ - g(1- M2)-½ (A.72)

_c' M%, _ a(1 - M2)-i (1.73)
2a + 2a 2

where the stall point is defined as 12 °. The Mach number in these expressions is

truncated at 0.95 to prevent numerical problems near M = 1. The unstalled drag

parameters are defined as:

ca = .0065 - .0216a + .4a 2 + Acd (A.74)

Aca = .43(M+ la[/.26-.9) for I_l> _ (A.75)

ACd = 0 otherwise (A.76)

a_ = .26(.9- M) (A.77)

For stalled flow, the following approximations are used:

ct = sgn(a) (A.78)

cd = 2sin 2a (A.79)

A.3 Wing Structural Model

The wing structural model is based on a finite element formulation of a standard

Euler beam undergoing beam (vertical) bending, chordwise bending, and torsion

(see Fig. A.3). The extensional degree of freedom (translation along wing span)

is not considered as the wing is assumed to be rigid in this direction. The wing

continuous degrees of freedom are given by

fi = {w v ¢} (A.80)

which are related to the discrete degrees of freedom for one element:

(1---- {Wl Vl ¢10z, 0 Yl W2 1)2 ¢20z2 0 Y2} (A.81)
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as

fi = [H]_ (A.82)

where [H] is a matrix of shape functions. The standard shape functions are applied

here, a set of four Hermitian polynomials [Hb] for the bending degrees of freedom

and a set of two linear polynomials [H0] for the torsion degree of freedom such that

the matrix of shape functions may be written as:

[HI =

H_ 0 0 0 H_ H_ 0 0 0 H_

0 H_ 0 Hi 0 0 H_ 0 H_ 0

0 OHiO 0 0 OHiO 0

(A.83)

The strain energy for the linear beam theory is defined in several references

and is defined in terms of the beam continuous degrees of freedom of the present

formulation as:

1£V = -_ [EIc(v") 2 + EIb(w") 2 + GJ(O')2]dx (A.84)

The kinetic energy is formulated on the assumption that the center of gravity may

be offset from the elastic axis by a distance y. The translational velocity of an

arbitrary point on the beam cross section is written as:

fi_ = 0 (A.85)

u_ = _) (A.86)

fiz = tb+y¢_ (A.87)

In matrix form, the accelerations of an arbitrary point may be written as:

?2-"

0

1

1 0

0 y

t_

(A.SS)
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The variation of the kinetic energy is then given by:

]/0' AT = p _T _ dV = 5_ T _0 0 1 0 dA i} dx

yOy 2

(A.89)

For the structural model, Hamilton's principle is applied in its conservative

form:

['_ 6(T - V) dt = 0 (A.90)
dt 1

into which are substituted the appropriate expressions for the strain and kinetic

energy and the discrete relations to the continuous degrees of freedom. Following

these substitutions, the structural mass and stiffness matrices may be expressed

as:

[M s] = fot[HlT[M,][H]dx (A.91)

[K s] = fo'[HlT[Ksl[H]dz (A.92)

where

[Ms]

[Ks]

m

0

So

Eh

0

0

0 S_

m 0

o Ie

o

EIc

0

0

0

GJ

(A.93)

(A.94)

These integrations are performed symbolically, and result in the 10 x 10 beam

element structural mass and stiffness matrices.
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A.4 Wing Aerodynamic Model

The wing aerodynamic model is based on the quasi-steady lift approximation:

¢b

a_ff = a0 + ¢ - _ (A.95)

where w and ¢ represent two of the three continuous degrees of freedom for the

wing, and U is the free stream velocity. The components of aerodynamic force

may then be written as:

_b

L,_ = qccto(ao + ¢- _) (A.96)

L, = 0 (A.97)

Me = L,_ e (A.98)

where e is the chordwise distance of the elastic axis behind the aerodynamic center.

These forces may be expressed with aerodynamic coefficient matrices as:

Me ao ¢

where

and [A0] = [A,].

written as

(A.99)

[A1]

[A2]

0 0 qccto

0 0 0

0 0 qcecto

-qcc_o/U

0

- qcect¢, / U

0 0

0 0

0 0

(A.IO0)

(A.IO1)

The variation of work done by the aerodynamic forces may be

6W = {Sw 8v _¢} L_

Ms

dx (A.102)
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which, after substitution of the aerodynamiccoefficientexpressionsand the rela-

tions betweenthe discreteand continuousdegreesof freedom,leadsto the aerody-

namic damping and stiffnessmatrices:

[CA] = fot[H]T[A,][H]dx (A.103)

[K A] = fo'tH]T[A_][Hldz (A.104)

These integrations are performed symbolically, and result in the 10 x 10 beam

element aerodynamic damping and stiffness matrices. Application of Hamilton's

principle in the nonconservative form (work included) shows that the aerodynamic

matrices may be subtracted from the structural matrices to give the total mass,

damping, and stiffness matrices for the wing as:

IMp] = [M s] (A.105)

[C_] = [C s] - [C A] (A.106)

[K_] = [K s] - [K A] (A.107)

A.5 Wing Aerodynamic Model with Sweep

With sweep included in the wing, the aerodynamic contribution to the system

matrices must be modified. Consider the elastic wing swept back at an angle A as

illustrated in Fig. A.4. The quasi-steady lift approximation is now written as

c_,II = _0 +¢cos h - _ - w'sin h (A.108)

where a continuous degrees of freedom w' is now required for the formulation. The

vector of continuous degrees of freedom and the associated shape function matrix

used for the structural model must be modified to reflect this new requirement.

The new relationship between the continuous and discrete degrees of freedom is

written as:

fiA = {w v ¢ v' w'} (A.109)
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which are related to the discretedegreesof freedom for one element:

0 = {Wl Vl ¢10z 1 0 Yl W2 V2 ¢20z2 0 Y2} (A.110)

fiA = [HA]O (A.111)

where [H A ] is the new matrix of shape functions for the swept wing formulation:

H_ 0 0 0 H i H i 0 0 0

0 H_ 0 H i 0 0 H i 0 H_

0 0 HJ 0 0 0 0 H_ 0

0 (H_)' 0 (H_)' 0 0 (H_)' 0 (Hi)'

(St)' 0 0 0 (Hi)' (Hi)' 0 0 0
L.

H A] =

H_

0

0

0

(Hi)'

(A.112)

To be compatible with the new vector of continuous displacements, the work

is now expressed as:

pl

6W = ]o{6w 6v 6¢ ,%' 6w'}

¢

L,.

L,_

M+

M_

M_

dx (A.113)

The components of aerodynamic force are, again, written with aerodynamic

= [A3]

¢

D0

0

D0

0

0

+ [A4]

W

13

¢

73/

W t

+ [As]!

¢

W

V

¢
i

b'

tb'

(A.114)

coefficient matrices:

L,o

Lv

Mz

M_
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where the new matricesare5 x 5 rather then 3 x 3, and are listed asfollows:

[A4]'

[As]

0 0 qcclo cosA

0 0 0

0 0 qcectocosA

0 0 0

0 0 0

-qcclo/U 0 0

0 0 0

-qecc_o/U 0 0

0 0 0

0 0 0

0 qcctosinA

0 0

0 qce% sinA

0 0

0 0

0 0

0 0

0 0

0 0

0 0

(A.115)

(A.116)

with [Aa] = [A4]. The variation of work done by the aerodynamic forces then leads

to the aerodynamic damping and stiffness matrices:

[Ca] = fo'[HA]T[A4][HA]dx (A.117)

A] = fot[HA]TtAs][HA]dx (A.118)

which may be subtracted from the structural matrices as before. The structural

wing matrices are not influenced by the wing sweep.

Wing sweep also modifies the lift curve slope. For a shear wing, where the

airfoil section is assumed to rotate with the sweep and remain perpendicular to

the elastic axis, the effective lift curve slope becomes:

(%)4: = (%) cos A (A.119)

and for a standard swept wing, where the airfoil remains aligned with the free

stream, the effective lift curve slope becomes:

(%)4: = (%) c°s2 A (A.120)
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A.6 Coupling of the Wing and Rotor Systems

The wing is coupled to the rotor through the discrete degrees of freedom at the

wing tip. There are two ways in which the coupling occurs: 1) the rotor system

degrees of freedom at the pylon pivot point are related to the discrete degrees of

freedom at the wing tip and 2) the rotor hub forces, which are written in terms of

the rotor perturbation parameters, perform work on the wing.

The discrete displacements at the wing tip may be written as:

4, = {6w261)26¢261)_6w_} (A.121)

where the subscript 2 indicates association with the second node of the wing tip

beam element. With sweep introduced into the wing, these are related to the pylon

pivot degrees of freedom (xp, yp, Zp , O_x, C_y, and az) as:

Xp = W 2 (A.122)

yp = v2sinA (A.123)

zp = v2cosA (A.124)

' (A.125)Ot x _ I) 2

= - ' sinh (A.126)_ ¢2 cos h w2

az = -¢2 sina - w_cosh (A.127)

and these relationships are substituted into the rotor system equations (Eqns. A. 12-

A.17 and Eqns. A.55-A.60) and the net hub force equations (Eqns. A.66-A.68).

Work is performed on the wing by the rotor hub forces, but only on the wing
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tip. After a transformation for the wing sweep, the work may be written as:

H

T cos A + Y sin A

(SW = {(5w2 _v2 _¢_ _v_ _w_} (My + hH)cosA + QsinA (A.128)

Mz - hY

-Q cosA + (M r + hH) sin A

There is no integration here since the degrees of freedom are discrete. The work

is nondimensionalized by dividing through by (-_Ibfi 2) which gives the coefficient

form of the rotor hub forces:

c.

CT COS A + Cy sin A

tiW (A.129)N-7-7 2 -- (Sqt(27) (CM_ + /_CH) cos A + CQ sin A
T lbfl aa

CM. -- ]lCy

-CQ cos A + (CM_ + hCg) sin A

Substitution of the expressions for the hub forces into the above equations yields

the work performed on the wing tip beam element in terms of the wing tip and

blade perturbation motions. Writing this system as coefficients of the wing and

blade motion yields damping and stiffness matrices which may be added to those

associated with the rotor system (Eqns. A.12-A.17 and Eqns. A.55-A.60).

The wing and rotor system equations may then be assembled using standard

finite element techniques where the parts of each matrix associated with common

global degrees of freedom are added together. The rotor matrices are already in

global form because they are written in terms of the discrete wing tip degrees of

freedom. The wing matrices are assembled based on conversion of the element

degrees of freedom into global degrees of freedom, but, as only one element is

associated with the wing tip node, the five degrees of freedom at that location

are already global. The common global degrees of freedom for the rotor and wing

systems are those five degrees of freedom associated with the wing tip node.
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A.7 Listing of the Rotor/Wing Matrices

The final inertial and aerodynamic rotor/wing matrices are listed in the form used

in the rigid-blade analysis. The notation appearing in the listing is as follows:

mroti(i,j) is the mass matrix which has only inertial contributions, crotf(i,j) is the

aerodynamic damping matrix, croti(i,j) is the inertial damping matrix, kvotf(i,j) is

the aerodynamic stiffness matrix, and kroti(i,j) is the inertial stiffness matrix. The

element matrices are separated by aerodynamic and inertial contributions so that

one of these effects may be easily excluded from the analysis if so desired. The two

contributions are simply added together if both are desired. The numbering i or j

associated with each degrees of freedom is

l _--- W 2

2 -- V 2

3 = 42

4 = v_

I
5 --- tO 2

6 = fll_

7 = ill,

8 = 6c

9 = ¢Io

IO = 3o

11 = ¢o

where the first 5 are the discrete degrees of freedom associated with the wing tip

and the last 6 are the rotor system fixed frame degrees of freedom. Some of the

parameters appearing in the listing are defined as follows:

csl = cos A
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snl = sin A

Mbstar = M[

Szstar = S_

Sb0star = S_o

Ibastar = I_

Ibetstar = I_

Iz0star = I_0

hetstar = I_

Iz0astar = l_o _

nubeta = v0

kp = kinematic pitch-flap coupling

hmu = Aerodynamic coefficient H,

tth = Aerodynamic coefficient To

and the remaining terms can be understood from these examples. The term auloro!

has a value of 1 if constant rotor speed assumption is desired (no rotor speed

perturbation degree of freedom) and has a value of 0 otherwise. The nonzero

contributions to the rotor wing matrices are now listed as:

mroti(1,1)

tarot i (1,3)

tarot i (1,5)

mroti(1,9)

mroti(2,2)

mroti(2,4)

mroti(2,8)

mroti(2, I0)

= 2*Mbstar;

= 2*Mbstar*csl*h ;

= 2*Mbstar*h*snl ;

= Szstar ;

- 2*Mbstar*csl'2 + 2*Mbstar*snl'2;

= -2*Mbstar*h*snl ;

= -(Szstar*snl) ;

= 2*SbOstar*csl ;
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mroti(3,1) = 2,Mbstar*csl,h;

mroti(3,3) = 2*Mbstar*csl'2*h'2 + 2_lOstar*autorot_snl'2;

mroti(3,5) = -2*IOstar*autorot*csl*snl + 2*Mbstar*csl,h'2*snl;

mroti(3,9) = Szstar*csl*h;

mroti(S,11) = 2*IzOastar*autorot*snl;

mroti(4,2) = -2*Mbstar*h*snl;

mroti(4,4) = 2*Mbstar*h'2;

mroti(4,8) = Szstar*h;

mroti(5,1) = 2*Mbstar*h*snl;

mroti(5,3) = -2*IOstar*autorot*csl*snl + 2*Mbstar*csl,h^2,snl;

mroti(5,5) = 2*IOstar*autorot*csl'2 + 2*Mbstar*h'2*sn1"2;

mroti(5,9) = Szstar*h*snl;

mroti(5,11) = -2*IzOastar*autorot*csl;

mroti(6,3) = -(Ibastar*csl);

mroti(6,5) = -(Ibastar*snl);

mroti(6,6) = Ibetstar;

mroti(?,4) = Ibastar;

mroti(7,7) = Ibetstar;

mroti(8,2) = -(Szstar*snl);

mroti(8,4) = Szstar*h;

mroti(8,8) = Izetstar;

mroti(9,1) = Szstar;

mro%i(9,3) = Szstar*csl*h;

mroti(9,5) = Szstar*h*snl;

mro%i(9,9) = Izetstar;

mroti(lO,2) = SbOstar*csl;

mroti(lO,lO) = IbOstar;
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mroti(ll,3) = IzOastar*autorot*snl;

mroti(ll,5) = -(IzOastar*autorot*csl);

mroti(ll,ll) = IzOstar;

crotf(l,1) = gamma*hmu;

crotf(1,3) = csl*gamma*h*hmu;

crotf(1,4) = -(gamma*hbd);

crotf(1,5) = gamma*h*hmu*snl;

crotf(1,7) = -(gamma*hbd);

crotf(1,9) = gamma*hzd;

crotf(2,2) = gamma*hmu*snl'2 - 2*csl'2*gamma*tlam;

crotf(2,3) = -(csl*gamma*hbd*snl) + 2*csl*gamma*snl*tzd;

crotf(2,4) = -(gamma*h*hmu*snl);

crotf(2,5) =(-(gamma*hbd*snl'2) - 2*csl^2*gamma*tzd)*autorot;

crotf(2,6) = gamma*hbd*snl;

crotf(2,8) = -(gamma*hzd*snl);

crotf(2,10) = -2*csl*gamma*tbd;

crotf(2,11) = 2*csl*gamma*tzd;

crotf(3,1) = csl*gamma*h*hmu;

crotf(3,2) = -2*autorot*csl*gamma*qlam*snl;

crotf(3,3) = csl'2*gamma*h'2*hmu + 2*autorot*gamma*qzd*snl^2;

crotf(3,4) = -(csl*gamma*h*hbd);

crotf(3,5) = csl*gamma*h'2*hmu*snl - 2*autorot*csl*gamma*qzd*snl;

crotf(3,7) = -(csl*gamma*h*hbd);

crotf(3,9) = csl*gamma*h*hzd;

crotf(3,10) = -2*autorot*gamma*qbd*snl;

crotf(3,11) = 2*autorot*gamma*qzd*snl;
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crotf(4,2) = -(gamma*h*hmu*snl);

crotf(4,3) = csl,gamma*h*hbd;

crotf(4,4) = gamma*h'2*hmu;

crotf(4,5) = gamma*h*hbd*snl;

crotf(4,6) = -(gamma*h*hbd);

crotf(4,8) = gamma*h*hzd;

crotf(5,1) = gamma*h*hmu*snl;

crotf(5,2) = 2,autorot*csl'2*gamma,qlam;

crotf(8,3) = csl*gamma_h'2*hmu*snl - 2*autorot*csl*gamma*qzd*snl;

crotf(5,4) = -(gamma*h*hbd*snl);

crotf(5,5) = 2*autorot,csl'2,gamma,qzd + gamma,h'2,hmu,snl-2;

crotf(5,7) = -(gamma*h*hbd*snl);

crotf(5,9) = gamma*h*hzd*snl;

crotf(5,10) = 2*autorot*csl*gamma*qbd;

crotf(5,11) = -2*autorot*csl*gamma*qzd;

crotf(6,2) = -(gamma*mmu*snl);

crotf(6,3) = csl_gamma*mbd;

crotf(6,4) = gamma*h*mmu;

crotf(6,5) = gamma*mbd*snl;

crotf(6,6) = -(gamma*mbd);

crotf(6,8) = gamma*mzd;

crotf(7,1) = gamma*mmu;

crotf(7,3) = csl*gamma*h*mmu;

crotf(7,4) = -(gamma*mbd);

crotf(7,5) = gamma*h*mmu*snl;

crotf(7,7) = -(gamma*mbd);

crotf(7,9) = gamma*mzd;
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crotf(8,2) : -(gamma*qmu*snl);

crotf(8,3) = csl*gamma*qbd;

crotf(8,4) = garuna*h*qmu;

crotf(8,5) = gamma*qbd*snl;

crotf(8,6) = -(gamma*qbd);

crotf(8,8) = gamma*qzd;

crotf(9,1) = gamma*qmu;

crotf(9,3) = csl*gamma*h*qmu;

crotf(9.4) = -(gamma*qbd);

crotf(9,5) = gamma*h*qmu*snl;

crotf(9,7) = -(gamma*qbd);

crotf(9,9) = gamma*qzd;

crotf(lO,2) = -(csl*gamma*mlam);

crotf(lO,3) = autorot*gamma*mzd*snl;

crotf(10,5) = -(autorot*csl*gamma*mzd);

crotf(lO,lO) = -(gamma*mbd);

crotf(lO,11) = gamma*mzd;

crotf(11,2) = -(csl*gamma*qlam);

crotf(11,3) = autorot*gamma*qzd*snl;

crotf(11,5) = -(autorot*csl*gamma*qzd);

crotf(11,10) = -(gamma*qbd);

crotf(11,11) = gamma*qzd;

croti(6,4) = 2*Ibastar;

croti(6,7) = 2*Ibetstar;

crot±(7,3) = 2*Ibastar*csl;

croti(7,5) = 2*Ibastar*snl;
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croti(7,6) = -2*Ibetstar;

croti(8,9) = 2*Izetstar;

croti(9,8) = -2*Izetstar;

krotf(1,3) = -(V*gamma*hmu);

krotf(1,6) = gamma*hbd;

krotf(1,7) = gamma*hth*kp;

krotf(1,8) = -(gamma*hzd);

krotf(2,4) = V*gamma*hmu*snl;

krotf(2,6) = -(gamma*hth*kp*snl);

krotf(2,7) = gamma*hbd,snl;

krotf(2,9) = -(gamma*hzd*snl);

krotf(2,10) = 2*csl*gamma*kp*tth;

krotf(3,3) = -(V*csl*gamma*h*hmu);

krotf(3,6) = csl*gamma*h*hbd;

krotf(3,7) = csl*gamma*h*hth*kp;

krotf(3,8) = -(csl,gamma*h*hzd);

krotf(3,10) = 2*autorot*gamma*kp*qth*snl;

krotf(4,4) = -(V*gamma*h*hmu);

krotf(4,8) = gamma*h*hth*kp;

krotf(4,7) = -(gamma*h*hbd);

krotf(4,9) = gamma*h*hzd;

krotf(5,3) = -(V*gamma*h*hmu*snl);

krotf(5,6) = gamma*h*hbd*snl;

krotf(5,7) = gamma*h*hth*kp*snl;

krotf(5,8) = -(gamma*h*hzd*snl);

krotf(5,10) = -2*autorot*csl*gamma*kp*qth;
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krotf(6,4)

krotf(6,6)

krotf(6,?)

krotf(6,9)

krotf(7,3)

krotf(7,6)

krotf(7,7)

krotf(7,8)

krotf(8,4)

krotf(8,6)

krotf(8,7)

krotf(8,9)

krotf(9,3)

krotf(9,6)

krotf(9,7)

krotf(9,8)

= -(V*gamma*mmu);

= gamma*kp*mth;

= -(gamma*mbd);

= gamma*mzd;

-(V*gamma*mmu);

= gamma*mbd;

= gamma*kp*mth;

= -(gamma*mzd);

= -(V*gamma*qmu);

= gamma*kp*qth;

= -(gamma*qbd);

= g_mma*qzd;

= -(V*gmnma*qmu);

= g_mma*qbd;

= gamma*kp*qth;

= -(g_mma*qzd);

krotf(lO,lO) = gamma*kp*mth;

krotf(11,10) = gamma*kp*qth;

kroti(3

kroti(4

kroti(5

kroti(6

kroti(7

kroti(8

,6) = -(Ibastar*csl) + Ibastar*csl*nubeta'2;

,Y) = Ibastar - Ibastar*nubeta'2;

,6) = -(Ibastar*snl) ÷ Ibastar*nubeta'2*snl;

,6) = -Ibetstar + Ibetstar*nubeta'2;

,7) = -Ibetstar + Ibetstar*nubeta'2;

,8) = -Izetstar + Izetstar*nuzeta'2;

kroti(9,9) = -Izetstar + Izetstar*nuzeta'2;

kroti(lO,lO) = IbOstar*nubO'2;

389



kroti(ll,ll) = IzOstar*nuzO'2;

A.8 Listing of the Wing Element Matrices

The final wing element matrices with both aerodynamic and structural contribu-

tions are listed in the form used in the rigid-blade analysis. The notation appearing

in the listing is as follows: m(i,j) is the mass matrix which has only inertial contri-

butions, c(i,j) is the damping matrix which has both structural and aerodynamic

contributions, and k(i,j) is the stiffness matrix which also has both structural and

aerodynamic contributions. The numbering i or j associated with each degree of

freedom is:

1 = w 1

2 = Vl

3 = ¢1

4 = v'I

5 = w'1

6 -- /132

7 = V2

8 = ¢2

!
9 = v 2

,I10 = w 2

where the first 5 are the discrete degrees of freedom associated with node 1 (node

closer to wing root) and the last 5 are the discrete degrees of freedom associated

with node 2. Some of the parameters appearing in the listing are defined as follows:

mcg = mass per unit length

39O



Salf = 1st massmoment of inertia about elastic axis per unit length

Icg = 2nd mass moment of inertia about elastic axis per unit length

R = blade radius

1 = element length

Cla = wing lift curve slope

cord = blade chord, c/R

qou = dynamic pressure over free stream velocity, q/U

sdamp = structural damping

eic = E I_

eif = EIb

gj = GJ

The nonzero contributions to the wing matrices are now listed as follows:

Wing element mass matrix:

m(l,l) = 13*R'2*l*mcg/35;

m(l,3) = 7*R,Sail*l/20;

m(1,5) = -ll*R*l^2*mcg/210;

m(1,6) = 9*R'2*l*mcg/70;

m(l,8) = 3*R*Salf*i/20;

m(l,10) = 13*R*l'2*mcg/420;

m(2,2) = 13*R'2*l*mcg/35;

m(2,4) = ll*R*l'2*mcg/210;

m(2,7) = 9*R'2*l*mcg/70;

m(2,9) = -13*R*l'2*mcg/420;

m(3,1) = 7*R,Sail*l/20;
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m(3,3) = Icg*l/3;

m(3,5) = -(Salf*l'2)120;

m(3,B) = 3*R*Salf*I/20;

m(3,8) = Icg*ll6;

m(3,10) = Salf*l'2/30;

m(4,2) = ll*R*l'2*mcg/210;

m(4,4) = l'3*mcg/105;

m(4,7) = 13*R*l'2*mcg/420;

m(4,9) = -(l'3*mcg)/140;

m(5,1) = -ll*R*l'2*mcg/210;

m(5,3) = -(Salf*l'2)/20;

m(5,5) = l'3*mcg/105;

m(5,6) = -13*R*l'2*mcg/420;

m(5,8) = -(Salf*l'2)/30;

m(5,10) = -(l'3*mcg)/140;

m(6,1) = 9*R'2*l*mcg/70;

m(6,3) = 3*B*Salf*i/20;

m(6,5) = -13*R*l'2*mcg/420;

m(6,B) = 13*R'2*l*mcg/35;

m(6,8) = 7*R*Salf*i/20;

m(6,10) = ll*R*l'2*mcg/210;

m(7,2) = 9*R'2*l*mcg/70;

m(7,4) = 13*K*l'2*mcg/420;

m(7,7) = 13*R'2*l*mcg/35;

m(7,g) = -ll*R*l'2*mcg/210;

m(8,1) = 3*R*Salf*i/20;

m(8,3) = Icg*i/6;
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m (8,s) = -(Salf*1"2)/30 ;

m(8,6) = 7*R*Salf*i/20;

m(8,8) = Icg*i/3;

m(8,10) = Salf*l'2/20;

m(9,2) = -13*R*l'2*mcg/420;

m(9,4) = -(l'3*mcg)/140;

m(9,7) = -ll*R*l'2*mcg/210;

m(9,9) = l'3*mcg/105;

m(10,1) = 13*R*l'2*mcg/420;

m(%0,3) = Salf*l'2/30;

m(10,5) = -(iA3*mcg)/140;

m(I0,6) = ll*R*l^2*mcg/210;

m(10,8) = Salf*l'2/20;

m(10,10) = l'3*mcg/105;

Wing damping matrix:

c(1,1) = 13*Cla*R'2*cord*l*qou/35 + sdamp_w;

c(1,5) = -ll*Cla*R*cord*l'2*qou/210;

c(1,6) = 9*Cla*R'2*cord*l*qou/70;

c(l,10) = 13*Cla*R*cord*l'2*qou/420;

c(2,2)= sdamp_v;

c(3,1) = 7*Cla*R*cord*e*l*qou/20;

c(3,3) = sdamp_phi;

c(3,5) = -(Cla*cord*e*l'2*qou)/20;

c(3,6) = 3*Cla*R*cord*e*l*qou/20;

c(3,10) = Cla*cord*e*l'2*qou/30;
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c(5,1) = -ll*Cla*R*cord*l'2*qou/210;

c(5,5) = Cla*cord*l'S*qou/105;

c(5,6) = -I3*Cla*R*cord*l'2*qou/420;

c(5,10) = -(Cla*cord*l'3*qou)/140;

c(6,1) = 9*Cla*R^2*cord*l*qou/70;

c(6,5) = -13*Cla*R*cord*l'2*qou/420;

c(6,6) = 13*Cla*R'2*cord*l*qou/35 + sdamp_w;

c(6,10) = li*Cla*R*cord*l'2*qoul210;

c(7,7) = sdamp_v;

c(8,1) = 3*Cla*R*cord*e*l*qou/20;

c(8,5) = -(Cla*cord*e*l'2*qou)/30;

c(8,6) = 7*Cla*R*cord*e*l*qou/20;

c(8,8) = sdamp_phi;

c(8,10) = Cla*cord*e*l'2*qou/20;

c(I0,1) = 13*Cla*R*cord*l^2*qou/420;

c(10,5) = -(Cla*cord*l'3*qou)/140;

c(I0,6) = ll*Cla*R*cord*l'2*qou/210;

c(10,10) = Cla*cord*l'3*qou/105;

Wing stiffness matrix:

k(1,1) = 12*R'2*eif/l^3 - Cla*R'2*cord*q*snl/2;

k(I,3) = -7*Cla*R*cord*l*q*csl/20;

k(l,5) = -6*R*eif/l'2 + Cla*R*cord*l*q*snl/10;

k(l,6) = -12*R'2*eif/l^3 + Cla*R'2*cord*q*snl/2;

k(1,8) = -3*Cla*R*cord*l*q*csl/20;

k(l,10) = -6*R*eif/l'2 - Cla*R*cord*l*q*snl/10;
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k(2,2) = 12*R^2*eic/l'3;

k(2,4) = 6*R*eic/l'2;

k(2,7) = -12*R'2*eic/l_3;

k(2,9) = 6*R*eic/l'2;

k(3,1) = -(Cla*R*cord*e*q*snl)/2;

k(3,3) = gj/l - Cla*cord*e*l*q*csl/3;

k(3,5) = Cla*cord*e*l*q*snl/12;

k(3,6) = Cla*R*cord*e*q*snl/2;

k(3,8) = -(gj/1) - Cla*cord*e*l*q*csl/6;

k(3,10) = -(Cla*cord*e*l*q*snl)/12;

k(4,2) = 6*R*eic/l'2;

k(4,4) = 4*eic/1;

k(4,7) = -6*R*eic/l'2;

k(4,9) = 2*eic/1;

k(5,1) = -6*R*eif/l_2 + Cla*R*cord*l*q*snl/10;

k(5,3) = Cla*cord*l'2*q*csl/20;

k(5,5) = 4*eif/1;

k(5,6) = 6*R*eif/l'2 - Cla*R*cord*l*q*snl/10;

k(5,8) = Cla*cord*l'2*q*csl/30;

k(5,10) = 2*eif/1 + Cla*cord*l'2*q*snl/60;

k(6,1) = -12*R^2*eif/l'3 - Cla*R'2*cord*q*snl/2;

k(6,3) = -3*Cla*R*cord*l*q*csl/20;

k(6,5) = 6*R*eif/l'2 - Cla*R*cord*l*q*snl/10;

k(6,6) = 12*R'2*eif/l'3 + Cla*R'2*cord*q*snl/2;

k(6,8) = -7*Cla*R*cord*l*q*csl/20;

k(6,10) = 6*R*eif/l^2 + Cla*R*cord*l*q*snl/10;

k(7,2) = -12*R^2*eic/l'3;
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k(7,4) = -6*R*eic/l"2;

k(7,7) = 12*R'2*eic/1"3;

k(7,9) = -6*R*eic/l"2;

k(8,1) = -(Cla*R*cord*e*q*snl)/2;

k(8,3) = -(gj/1) - Cla*cord*e*l*q*csl/6;

k(8,5) = -(C1a*cord*e*l*q*sn1)/12;

k(8,6) = Cla*R*cord*e*q*snl/2;

k(8,8) = gj/1 - Cla*cord*e*l*q*csl/3;

k(8,10) = C1a*cord*e*l*q*sn1/12;

k(9,2) = 6*R*eic/1-2;

k(9,4) = 2*eic/1;

k(9,7) = -6*R*eic/l^2;

k(9,9) = 4*eic/l;

k(10,1) = -6*R*eif/l'2 - Cla*R*cord*l*q*snl/10;

k(10,3) = -(Cla*cord*l'2*q*csl)/30;

k(10,5) = 2*eif/l - Cla*cord*l'2*q*snl/60;

k(10,6) = 6*R*eif/l'2 + Cla*R*cord*l*q*snl/10;

k(10,8) = -(Cla*cord*l'2*q*csl)/20;

k(10,10) = 4*elf/l;
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Figure A.I: Wing and rotor model showing pylon pivot degrees of freedom and

rotor hub forces.
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Figure A.2: Velocity and force components on a representative blade section.

398



z

w I

Figure A.3: Continuous and discrete degrees of freedom associated with a wing

element.
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Figure A.4: Geometry of the swept wing configuration.
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Appendix B

Rigid Blade Flap Model

Including Free-Flight

The objective of the rigid-blade flap analysis is to provide initial estimates (to be

used for the elastic blade coupled trim procedure) for the blade collective and cyclic

controls 0:,5,01c, and 01_, and the fuselage angle of attack, a f, if free-flight trim is

considered. If the elastic-coupled-trim is for a cantilevered wing model, then af is

not required and the procedure is simplified. The rigid-blade analysis consists of

three parts: 1) estimation of the fuselage angle of attack and the rotor thrust based

on the gross airframe forces, but not including rotor hub forces other than thrust

and not including blade flap motion, 2) estimation of the collective setting required

to obtain the estimated rotor thrust from (1), and 3) with the initial guesses for

fuselage angle of attack and the collective setting, solve simultaneously the coupled

rotor/fuselage system with rotor flap motion included, resulting in an estimation

of the four desired values 0Ts, 01c, and 01s , and a I plus the rotor flapping unknowns

rio, Bl_, and ill,.
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B.1 Estimate of Fuselage Angle of Attack and

Rotor Thrust

If free-flight is not required, then a rotor thrust estimate is provided directly as

input, the fuselage angle is set to zero, and the analysis of the present section is

skipped. Otherwise, an initial approximation for a I is obtained from a balance of

forces on the fuselage. The hub forces from the rotor are not known, but the rotor

thrust can be estimated since it must balance the aircraft drag and weight. The

lift on the wing and horizontal tail depend on al, so even this initial estimate is

an iterative process. The lift and drag contributions from the wing and horizontal

tail are calculated as:

f
D! - 23aa A (B.1)

_ tt 2 7Nb (B.2)
D,_ 2 _aa S'(C_)"

_2
Dt - 2 _ aabaS'(C_)t (B.3)

L,_ - p22_gb3aaS'_(C'°)"(al + (ao),_) (B.4)

#2
Mw - 2 _ aabaS"(C")'_cw (B.5)

Mt - 2 _aba St(Cm)tCt (B.6)

7"I,, = D I + D,o + Dt (B.7)

T, = Tfh/sinap , if sinap -_ 0 (conversion, airplane modes) (B.8)

T_ = W, if sin_p = 0 (helicopter mode) (B.9)

TI_ = Tcosap , if sin% # 0 (conversion, airplane modes) (B.IO)

TI,, = W, if sinap = 0 (helicopter mode) (B.11)

where the lift and drag formulas for the wing, tail, and fuselage are the same as

those used in the elastic blade trim equations, T, is the estimate of rotor thrust, T1h

is the horizontal component of rotor thrust which must balance the drag forces,
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and 7"i,, is the vertical componentof rotor thrust which must balance with the

airframe lift forces. The drag forces are made to balance by setting the horizontal

component of rotor thrust equal to the sum of drags. Based on the pylon angle,

this then defines the thrust and the vertical component of the thrust which is used

to define a force residual in the vertical direction:

Fx=W-L,o-Lt-TIv (B.12)

The lift contribution of the horizontal tail is calculated from the pitch moment

balance:

Lt = (iw + Mt - nt(zw- zt)- Wx_- Wo_1z_ - nlzw)/(xt- x,_) (S.13)

because it is assumed that the elevator angle of the tail may be set to produce this

balance. A Jacobian is calculated from the force residual equation:

J = Tfh + Tfhcos2ap/sin2ap + L_/of + Lt/of (B.14)

and is used to calculate the new estimate for a I as:

(al),,e,. = (al)oZd + F,/J (B.15)

B.2 Derivation of Blade and Hub Forces

Following convergence, the next step is to determine the collective setting required

to produce the rotor thrust T,. This calculation is also an iterative process, and

the aerodynamic model of the rotor forces must first be formulated.

The rotor fixed-frame (hub) forces are calculated based on a rigid-blade-flapping

model with flap frequency uz and a high-inflow aerodynamic model. The local

velocities on a blade section at some spanwise station along the blade are defined

as:

Ut = t_ + twW + t_,,w' + t,_gv (B.16)

Up = p_ + p,,,w + p_,,w' + p_w (B.17)
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where U, is the tangential velocity component, Up is the perpendicular (upward)

velocity component; subscript c denotes constant values, w and w' indicate depen-

dence of the local velocity on displacement w, and _b indicates dependence of the

local velocity on blade flap velocity. The velocity components are defined as:

tc = #cosap cos01 sine + #_pcosap cos_b sin01 + Asin01 +

#sinap sin01 + xcos01 (B.18)

t_ = -/3pcos01 (B.19)

t_, = -/_sin0_ (cosap cos0, sine + sina v sin0a ) (B.20)

t_ = sin01 (B.21)

pc = p/3pcosap cos¢ cos01 + Acos01 + #cos01 sinap -

/_cosa v sine sin01 - xsin01 (B.22)

p_, = -/3vsin01 (B.23)

p_,, = -pcos01 (cosa v cos0x sine + sina v sin0_ ) (B.24)

p6 = cos01 (B.25)

and the blade displacement w is defined in terms of the flap angle/3 such that:

w = x/3 (B.26)

w' = /3 (B.27)

tb = z/3 (B.28)

The control angle 0 is substituted for in terms of its harmonic components as:

0 = Ors + 0xccos¢ + 01,sin_b (B.29)

Now, assuming the blade produces only lift proportional to the nominal lift curve

slope a, the forces on the blade along the chord line and perpendicular to it are

given by:

7u2 (B.30)
UbO = _ p
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"7

which may be transformed into the hub plane as:

(B.31)

F_ = -vboCOS01 + wbosin01 (B.32)

Fz = Vbosin01 + wb0cos0a (B.33)

Fr = -/3Fz (B.34)

The rotor forces are calculated by transforming the following integrals into the

fixed system:

1T = Fz dx (B.35)

(F_sintb + Frcos¢ )dx (B.36)

M_ = xF.sin¢ dz (B.37)

M_ = xFzcos¢ dx (B.38)

and the flap moment equilibrium on tile blade is given by:

1M_ = x F_ dx (B.39)

which can be written as

Me = Mo + mlccos_b + Mlssin_ (B.40)

where M0 represents the constant terms, and M1c and Mls represent the coefficients

of the periodic terms cos_b and sin_, respectively. The final terms in these force

equations (4 hub forces and 3 flapping moments) are listed in the following section.

B.3 Listing of the Hub Force and Blade Mo-

ment Expressions

The integrations of Eqns. B.35-B.40 result in seven lengthy expressions of the four

hub forces and three blade moments, all in the rotating frame and containing the
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sevenunknowns.

The completeequation of motion for blade flapping is given by:

3 + u_/3 = TMz + w_° a (B.41)
_'_2 t--p

which in nondimensional form and after substitution of the flap angle in terms of

harmonics:

/3 =/30 +/31ccos¢ +/31.sin¢ (B.42)

may be written as three equations which are coefficients of the periodic terms:

(B.43)

which is uncoupled from the cyclic equations:

va_ - 1
/31, = Mac (B.44)

uz2 - 1
_/3,, = M1, (B.45)

7

The cyclic equations are coupled because Mlc and M1, each contain terms with

both /31c and /31,. The actual terms of the aerodynamic moments are listed as

follows: the steady moment is written as

14

M0 = Y_ b; (B.46)
i=l

with the coefficients given as follows

ba = -(Ai cosa0Ts)/6. (B.47)

ha = -(# cos3075sp)/6. (B.48)

ha = cos207s sin075/8. (B.49)

b4 = #2cos2av cos2075sinO_s/8. (B.50)

bs = -(Ai cos0zs sin 207s)/6. (B.51)

/_ = -(#cos0Tssinap sin20,5)/6. (B.52)
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/_. = sinaOzs/8.

ba = #2cos2av sinaOrs/8.

/_ = _cosa v cos3OrsO,,/6.

bl0 = A/#cosav cos2OrssinOzsOl_/8.

bu = _u2cosap cos2Orssinav sinOrs01°/8.

b12 = /_cosa v cosOTssin2Ors01,/6.

b13 = A//zcosot v sin3Ors01_/8.

b14 = /_2cosap sinap sinaOrsOl_/8.

the cosine moment is written as

with

32

Mlc= _ b,
i=15

515

b16

b17

b_s

bl9

b_o

b21

b22

b23

b24

b25

b26

b2r

= -(3,. cos3075)/8.

= -(v30cos,_. cos3075)/6.

= -(t_3pcosc_pcos3075)/6.

= 1_3o3v_cosav cosa0rs/6.

= -(_31,¢os_, ¢os307_)/8.

= -(31, cosOrssin20rs)/8.

= -(#3oCOSap cos075 sin20rs)/6.

= -(_ 3pcos_, cos07_sin_0,_)/6.

= _3p2cosav cos0rssin20rs/6.

= -(_231,cos2ap cos0rssin20rs)/8.

= cosS07501c/8.

= _2cos2ap cosaOTsOa_/8.

= Aicos2OrssinOrsOl_/6.
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(B.53)

(B.54)

(B.55)

(B.56)

(B.57)

(B.58)

(B.59)

(B.60)

(B.61)

(B.62)

(B.63)

(B.64)

(B.65)

(B.66)

(B.67)

(B.6S)

(B.69)

(B.70)

(B.71)

(B.72)

(B.73)

(B.74)



b2a = /tcos2Ozssinav sinOzs01_/6.

b29 = cosO_,ssin2OzsOld8.

b_ = _u2cos2av cosOrssin2Ors01_/8.

b31 = AisinaOrs01c/6.

b32 = #sinap sinaOrsOiJ6.

and the sine moment is written as

50

Mls = Z bi

i=33

with

b_ = /_, cos30rs/8.

b:_ = -(Ai/tcosap cos3Ors)/4.

b_ = -(t?/_,,cos _. cos%_)/s.

b36 = -(#2cost_p cosaOrssp)/4.

b37 = /_COSap cos2Ors sinOrs/3.

b_ = /31_cosOrssin20rs/8.

/39 = -(,_it, cos% cosOrs sin2Ors)/4.

b4o = -(U 2/31ccos 2ap cosOr5 sin 2ors)/8.

b4a = -(#2cosap cosOrssinap sin2Ors)/4.

b,t2 = /tcosap sin3Ors/3.

h3 = cos30rs01,/8.

b44 = 3/t2cos2ap cosaOrs01o/16.

b4s = Aicos2OrssinOrsOx,/6.

b46 = /-tcos2Orssina,, sinOrsOx,/6.

b4r = cosOrssin2OrsOa,/8.

b48 = 3/flcos2%, cosOrssin2Ors01,/16.
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(B.75)

(B.76)

(B.77)

(B.78)

(B.79)

(B.SO)

(B.81)

(B.82)

(B.83)

(B.84)

(B.85)

(B.86)

(B.87)

(B.SS)

(B.89)

(B.90)

(B.91)

(B.92)

(B.93)

(B.94)

(8.95)

(8.96)



b49 = Aisin30750,,/6. (B.97)

bso = #sinap sin307501,/6. (B.98)

The four hub force expressions, currently written in the rotating hub plane,

must be converted to a fixed frame. The Fourier coordinate transformation into

the fixed frame depends on the number of blades, but, as this rigid-blade analysis

only provides an estimate of control parameters and the aerodynamic model is

based only on a representative lift curve slope, it is adequate to assume an ar-

bitrary number of blades to represent the tip-path-plane tilt for any typical Nb

bladed system. This assumption greatly simplifies the hub force equations. The

transformation to fixed frame is based on a three-bladed system, and the resulting

hub forces are written as follows: the rotor thrust is given by

where

T- _'Nb ,4
6 _ a, (B.99)

i----1

{21 = --( "_i COS3075) / 2. (B. 100)

a2 = -(1_ cos3Orssp)/2. (B.101)

a3 = cos20rssin0rs/3. (B.102)

a4 = #: cos_ av cos2Ors sin0rs/2. (B.103)

as = -(AicosOrssin20rs)/2. (B.104)

a 6 : --(p cos0rssinap sin20rs)/2. (B.105)

a7 = sin30rs/3. (B.106)

as = /_2cos2ap sin30rs/2. (B.107)

a9 : //coso_ v cosa0rs01,/2. (B.108)

alo = Ai_tcosa v cos20rssin0rs01,/2. (B.109)

all = #2cosap cos20rssinav sin0rs0l,/2. (B.110)

a12 = /tcosc b, cos0rssin20rs0x,/2. (B.111)
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a13 -- Ai#cosotp sin307s01,/2.

a14 = _t2cosav sina v sin30rs01's/2.

and the rotor drag force is given by

H 7Nb 34=--C Z",
i=15

a15 = 3.)_iflleCOS3075/4.

ale = 3.p_31c cosaO7s,sp/4.

air = -(/31ccos20rssin0zs)/3.

als = Ai#cos% cos20rssin0zs/2.

a19 = p2cosap cos20rssinap sin0zs/2.

a2o = 3.)_i_lccosOrssin2Ors/4.

a21 = 3./Zfll ccOsOrssina v sin_Ors/4.

a22 = -(_sinaOrs)/3.

a23 = Ai_cosotp sinaOrs/2.

a24 = #2cosap sina v sin3Ors/2.

a_5 = AicosZOTs01,/4.

a26 = #cosaOrssinap

a_r = A_cos_OrssinOrs01,/2.

a2s = Aip cos2Orssinav sin0rs0x,

a29 = /_cos20rssin%_v sin0rs01,/2.

a3o = Aicos0zs sin2OrsOx,/4.

a31 = p cos0rssina v sin20rs01,/4.

a32 = A_sin307501,/2.

a33 = Ailasina v sin307_01,

where
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(B.112)

(B.113)

(B.114)

(B.115)

(B.116)

(B.117)

(B.118)

(B.119)

(B.120)

(B.121)

(B.122)

(B.123)

(B.124)

(B.125)

(B.126)

(B.127)

(B.128)

(B.129)

(B.130)

(B.131)

(B.132)

(B.133)



aM = _2sin%_p sin30rs0a,/2. (B.134)

The roll and pitch moments in the fixed frame may be written in terms of the

flapping restraint as they were in the rigid-blade analysis of Chapter 2:

"[ gb [p2
M_ - _ t _- 1)/31, (B.135)

7Nb _v _
M_ - _ _ _-1)/3,c (B.136)

B.4 Estimate of Collective

An iterative process is used to establish an initial value for the collective trim based

on achieving the desired level of thrust on the rigid-blade. The residual equation

here is simply

F1 = T- T_ (B.137)

where T is the calculated thrust based on the current value of 075 and Tr is the

desired thrust level calculated from the first part of this analysis. The new value

of the collective is calculated from the analytical Jacobian:

OT _ TNb _ Oai
J = 00rs 6 i=l _90rs

(B.13S)

(Ors),,e,o = (Ozs)otn + F,/J (B.139)

Convergence here results in the estimate for the collective setting, and ends the

analysis for the axisymmetric hover and axial flight cases. For these cases, only the

fuselage angle of attack and collective setting are required. Otherwise, the analysis

continues to determine the appropriate cyclic control values.
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B.5 Coupled Rotor/Airframe and Flapping

Blade Analysis

For conversion and airplane mode, an appropriate starting value for the collective

and fuselage angle of attack are now known. Using these initial values, a new

process is begun considering equilibrium of the entire airframe with the four hub

forces included and blade flapping included. There are seven unknowns in this

sequence: the three pitch controls, 07s, Olc, and 01s , the fuselage angle of attack

c_i, and the three flap angles,/30, /31c, and /31,. Values for the unknowns 01c, 01,,

/31c, and/31_ are initially set to small values (.01 rad). The value of/30 is obtained

throughout the iterative process by Eqn. B.43 using the current values of 0_s and

01_. The new values of the remaining unknowns are obtained through formulation

of a numerical 6 x 6 Jacobian matrix and 6 force residual equations. Airframe

forces and rotor forces are combined to write the equilibrium of the aircraft as:

Fa = 2Tjh -- (D,.,, + D/ + Dr) (B.140)

F2 = W-(L,.,,+ Lt+2T/,,) (B.141)

F3 = 2My + 2hH + M,,, + Mt - Lt(xt - x,,,)-

Dt(z_, - z,) - Wx,, - Wz,,.,o_y - D/z_ (B.142)

F4 = M.

Fs - (u_ - 1)/3,,
'7

= - 1)/3,c
-y

(B.143)

(B.144)

- M,, (B.145)

where F, represents the horizontal force equilibrium, F2 represents the vertical

force equilibrium, F3 represents the pitch moment equilibrium, F4 represents the

roll equilibrium of the rotor in the fixed system, and F5 and F6 represent the cyclic

moment balances of the blade in the rotating frame which primarily influence the

unknowns/31_ and/3xs. A Jacobian matrix is numerically generated by calculating
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the changein the six force residualsdue to individual perturbations of the six

independentunknowns (/3ois dependent). The new controls are written in terms

of the previous iteration as:

(t_),,_= (0)ota+ (1 - n)[J] -1/_ (B.146)

where 0 is a vector of the six independent unknowns and F is a vector of the six force

residuals, and R is a parameter used to control numerical damping. The iteration

process continues until convergence is reached, determined by the magnitude of

the force residual vector:

Mag(F) = ___F}
(B.147)

Ma9(F ) < .000001 for convergence (B.148)

The convergence of the problem is controlled by the application of appropriate

damping factors on the step size taken by the unknowns, and by recalculation of

the Jacobian matrix after a selected number of iterations.
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